本文解决了几秒钟学习问题,旨在从几个例子中学习新的视觉概念。在几次拍摄分类中的常见问题设置假设在获取数据标签中的随机采样策略,其在实际应用中效率低下。在这项工作中,我们介绍了一个新的预算感知几秒钟学习问题,不仅旨在学习新的对象类别,还需要选择信息实例来注释以实现数据效率。我们为我们的预算感知几秒钟学习任务开发了一个元学习策略,该任务共同了解基于图形卷积网络(GCN)和基于示例的少量拍摄分类器的新型数据选择策略。我们的选择策略通过图形消息传递计算每个未标记数据的上下文敏感表示,然后用于预测顺序选择的信息性分数。我们在迷你想象网,分层 - 想象项目和omniglot数据集上进行广泛的实验验证我们的方法。结果表明,我们的几次学习策略优于一个相当大的边缘,这表明了我们的方法的功效。
translated by 谷歌翻译
很少有视觉识别是指从一些标记实例中识别新颖的视觉概念。通过将查询表示形式与类表征进行比较以预测查询实例的类别,许多少数射击的视觉识别方法采用了基于公制的元学习范式。但是,当前基于度量的方法通常平等地对待所有实例,因此通常会获得有偏见的类表示,考虑到并非所有实例在总结了类级表示的实例级表示时都同样重要。例如,某些实例可能包含无代表性的信息,例如过多的背景和无关概念的信息,这使结果偏差。为了解决上述问题,我们提出了一个新型的基于公制的元学习框架,称为实例自适应类别表示网络(ICRL-net),以进行几次视觉识别。具体而言,我们开发了一个自适应实例重新平衡网络,具有在生成班级表示,通过学习和分配自适应权重的不同实例中的自适应权重时,根据其在相应类的支持集中的相对意义来解决偏见的表示问题。此外,我们设计了改进的双线性实例表示,并结合了两个新型的结构损失,即,阶层内实例聚类损失和阶层间表示区分损失,以进一步调节实例重估过程并完善类表示。我们对四个通常采用的几个基准测试:Miniimagenet,Tieredimagenet,Cifar-FS和FC100数据集进行了广泛的实验。与最先进的方法相比,实验结果证明了我们的ICRL-NET的优势。
translated by 谷歌翻译
Few-shot semantic segmentation aims to learn to segment new object classes with only a few annotated examples, which has a wide range of real-world applications. Most existing methods either focus on the restrictive setting of one-way few-shot segmentation or suffer from incomplete coverage of object regions. In this paper, we propose a novel few-shot semantic segmentation framework based on the prototype representation. Our key idea is to decompose the holistic class representation into a set of part-aware prototypes, capable of capturing diverse and fine-grained object features. In addition, we propose to leverage unlabeled data to enrich our part-aware prototypes, resulting in better modeling of intra-class variations of semantic objects. We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes based on labeled and unlabeled images. Extensive experimental evaluations on two benchmarks show that our method outperforms the prior art with a sizable margin.
translated by 谷歌翻译
Learning with limited data is a key challenge for visual recognition. Many few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them leads to the target task. In this paper, we propose a novel approach to adapt the instance embeddings to the target classification task with a set-to-set function, yielding embeddings that are task-specific and are discriminative. We empirically investigated various instantiations of such set-to-set functions and observed the Transformer is most effective -as it naturally satisfies key properties of our desired model. We denote this model as FEAT (few-shot embedding adaptation w/ Transformer) and validate it on both the standard few-shot classification benchmark and four extended few-shot learning settings with essential use cases, i.e., cross-domain, transductive, generalized few-shot learning, and low-shot learning. It archived consistent improvements over baseline models as well as previous methods, and established the new stateof-the-art results on two benchmarks.
translated by 谷歌翻译
图形广泛用于建模数据的关系结构,并且图形机器学习(ML)的研究具有广泛的应用,从分子图中的药物设计到社交网络中的友谊建议。图形ML的流行方法通常需要大量的标记实例来实现令人满意的结果,这在现实世界中通常是不可行的,因为在图形上标记了新出现的概念的数据(例如,在图形上的新分类)是有限的。尽管已将元学习应用于不同的几个图形学习问题,但大多数现有的努力主要假设所有所见类别的数据都是金标记的,而当这些方法弱标记时,这些方法可能会失去疗效严重的标签噪声。因此,我们旨在研究一个新的问题,即弱监督图元学习,以改善知识转移的模型鲁棒性。为了实现这一目标,我们提出了一个新的图形学习框架 - 本文中的图形幻觉网络(Meta-GHN)。基于一种新的鲁棒性增强的情节训练,元研究将从弱标记的数据中幻觉清洁节点表示,并提取高度可转移的元知识,这使该模型能够快速适应不见了的任务,几乎没有标记的实例。广泛的实验表明,元基因与现有图形学习研究的优越性有关弱监督的少数弹性分类的任务。
translated by 谷歌翻译
很少有射击分类旨在学习一个模型,该模型只有几个标签样本可用,可以很好地推广到新任务。为了利用在实际应用中更丰富的未标记数据,Ren等人。 \ shortcite {ren2018meta}提出了一种半监督的少数射击分类方法,该方法通过手动定义的度量标记为每个未标记的样本分配了适当的标签。但是,手动定义的度量未能捕获数据中的内在属性。在本文中,我们提出了a \ textbf {s} elf- \ textbf {a} daptive \ textbf {l} abel \ textbf {a} u摄孔方法,称为\ textbf {sala},用于半精神分裂的几个分类。萨拉(Sala)的主要新颖性是任务自适应指标,可以以端到端的方式适应不同任务的指标。萨拉(Sala)的另一个吸引人的特征是一种进步的邻居选择策略,该策略在整个训练阶段逐渐逐渐信心选择未标记的数据。实验表明,SALA优于在基准数据集上半监督的几种射击分类的几种最新方法。
translated by 谷歌翻译
图形神经网络(GNNS)已被用于解决几次拍摄学习(FSL)问题,并在转换设置下显示出很大的潜力。但是在归纳设置下,现有的基于GNN的方法竞争较差。这是因为它们使用实例GNN作为标签传播/分类模块,其与特征嵌入网络共同学习。这种设计是有问题的,因为分类器需要在嵌入而不快速地适应新任务。为了克服这个问题,本文提出了一种新的混合GNN(HGNN)模型,包括两个GNN,实例GNN和原型GNN。它们代替标签传播,它们用作嵌入适应模块的功能,以便快速适应嵌入到新任务的元学员的功能。重要的是,他们旨在处理FSL中的基本但经常被忽视的挑战,即只有每班少量镜头,任何几次拍摄的分类器都会对差异或可能导致阶层的严重采样镜头敏感分配重叠。 %我们的两个GNNS旨在分别解决这两种类型的差别少量射击,并且在混合GNN模型中利用它们的互补性。广泛的实验表明,我们的HGNN在三个FSL基准上获得了新的最先进。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
几个射击分类(FSC)需要使用几个(通常为1-5个)数据点的培训模型。事实证明,元学习能够通过培训各种其他分类任务来学习FSC的参数化模型。在这项工作中,我们提出了铂金(使用superodular互信息的半监督模型不可思议的元学习),这是一种新型的半监督模型不合理的元学习框架,使用了子模块化信息(SMI)函数来促进FSC的性能。在元训练期间,使用SMI函数在内部和外循环中利用铂金的数据,并获得元测试的更丰富的元学习参数化。我们在两种情况下研究白金的性能 - 1)未标记的数据点属于与某个插曲的标签集相同的类别集,以及2)在存在不属于的分布类别的地方标记的集合。我们在Miniimagenet,Tieredimagenet和几乎没有Shot-CIFAR100数据集的各种设置上评估了我们的方法。我们的实验表明,铂金优于MAML和半监督的方法,例如用于半监视的FSC的pseduo-Labeling,尤其是对于每个类别的标记示例比例很小。
translated by 谷歌翻译
大多数现有的少量学习(FSL)方法都需要大量的元训练中标记数据,这是一个主要限制。为了减少标签的需求,已经为FSL提出了半监督的元训练设置,其中仅包括几个标记的样品和基础类别中的未标记样本数量。但是,此设置下的现有方法需要从未标记的集合中选择类吸引的样本选择,这违反了未标记集的假设。在本文中,我们提出了一个实用的半监督元训练环境,并使用真正的未标记数据。在新设置下,现有方法的性能显着下降。为了更好地利用标签和真正未标记的数据,我们提出了一个简单有效的元训练框架,称为基于元学习(PLML)的伪标记。首先,我们通过常见的半监督学习(SSL)训练分类器,并使用它来获取未标记数据的伪标记。然后,我们从标记和伪标记的数据中构建了几个射击任务,并在构造的任务上运行元学习以学习FSL模型。令人惊讶的是,通过在两个FSL数据集的广泛实验中,我们发现这个简单的元训练框架有效地防止了在有限的标记数据下FSL的性能降解。此外,从元培训中受益,提出的方法还改善了两种代表性SSL算法所学的分类器。
translated by 谷歌翻译
少量对象检测(FSOD)旨在使用少数示例来检测从未见过的对象。通过学习如何在查询图像和少量拍摄类示例之间进行匹配,因此可以通过学习如何匹配来实现最近的改进,使得学习模型可以概括为几滴新颖的类。然而,目前,大多数基于元学习的方法分别在查询图像区域(通常是提议)和新颖类之间执行成对匹配,因此无法考虑它们之间的多个关系。在本文中,我们使用异构图卷积网络提出了一种新颖的FSOD模型。通过具有三种不同类型的边缘的所有提议和类节点之间的有效消息,我们可以获得每个类的上下文感知提案功能和查询 - 自适应,多包子增强型原型表示,这可能有助于促进成对匹配和改进的最终决赛FSOD精度。广泛的实验结果表明,我们所提出的模型表示为QA的Qa-Netwet,优于不同拍摄和评估指标下的Pascal VOC和MSCOCO FSOD基准测试的当前最先进的方法。
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
The performance of deep neural networks improves with more annotated data. The problem is that the budget for annotation is limited. One solution to this is active learning, where a model asks human to annotate data that it perceived as uncertain. A variety of recent methods have been proposed to apply active learning to deep networks but most of them are either designed specific for their target tasks or computationally inefficient for large networks. In this paper, we propose a novel active learning method that is simple but task-agnostic, and works efficiently with the deep networks. We attach a small parametric module, named "loss prediction module," to a target network, and learn it to predict target losses of unlabeled inputs. Then, this module can suggest data that the target model is likely to produce a wrong prediction. This method is task-agnostic as networks are learned from a single loss regardless of target tasks. We rigorously validate our method through image classification, object detection, and human pose estimation, with the recent network architectures. The results demonstrate that our method consistently outperforms the previous methods over the tasks.
translated by 谷歌翻译
现实世界中的数据通常显示出长尾巴的开放式(带有看不见的类)分布。实践识别系统必须在多数(头)和少数族裔(尾巴)阶级之间取得平衡,在整个分布中进行概括,并承认新颖的阶级(公开阶级)。我们将开放的长尾识别++(OLTR ++)定义为从这种自然分布的数据中学习,并优化了包括已知和开放类的平衡测试集的分类精度。 OLTR ++在一种集成算法中处理不平衡的分类,很少的学习,开放式识别和积极学习,而现有的分类方法通常仅着眼于一个或两个方面,并且在整个频谱中交付不佳。关键挑战是:1)如何在头和尾巴之间共享视觉知识,2)如何减少尾巴和开放式阶级之间的混淆,以及3)如何用学习知识积极地探索开放的课程。我们的算法OLTR ++将图像映射到特征空间,以便视觉概念可以通过记忆关联机制和学识渊博的指标(动态元元素)相互关联,这两者都尊重所封闭的见解类别的封闭世界分类并承认的新颖性打开课程。此外,我们提出了一个基于视觉记忆的主动学习方案,该方案学会以数据效率的方式识别未来扩展的开放类。在三个大规模开放的长尾数据集中,我们从Imagenet(以对象为中心),位置(以场景为中心)和MS1M(面部为中心)数据策划了三个标准基准(CIFAR-10-LT,CIFAR,CIFAR,CIFAR) -100-LT和Inaturalist-18),我们作为统一框架的方法始终展示竞争性能。值得注意的是,我们的方法还显示出积极探索开放阶级和对少数群体的公平分析的强大潜力。
translated by 谷歌翻译
图上的节点分类是许多实际域中的重要任务。它通常需要培训标签,在实践中获得很难或昂贵。鉴于标签的预算,主动学习旨在通过仔细选择要标记的节点来提高性能。先前的图形活动方法使用标记的节点学习表示表示,并选择一些未标记的节点进行标签采集。但是,它们并未完全利用未标记节点中存在的表示能力。我们认为,未标记节点中的表示能力对于积极学习和进一步改善了积极学习的节点分类的性能很有用。在本文中,我们提出了一个基于潜在空间聚类的活性学习框架(LSCALE),在该框架中,我们在标签和未标记的节点中充分利用了表示功能。具体而言,为了选择用于标签的节点,我们的框架使用了基于无监督功能和监督功能的动态组合,在潜在空间上使用K-Medoids聚类算法。此外,我们设计了一个增量聚类模块,以避免在不同步骤中选择的节点之间的冗余。在五个数据集上进行的广泛实验表明,我们提出的框架LSCALE始终如一,并显着超过了较大的边距。
translated by 谷歌翻译
在元学习框架下设计了许多射门学习方法,这些方法从各种学习任务中学习并推广到新任务。这些元学习方法在从同一分布(I.I.D.观察)中绘制的所有样本中的情况下实现了预期的性能。然而,在现实世界应用中,很少拍摄的学习范式往往遭受数据转移,即,即使在相同的任务中,也可以从各种数据分布中汲取不同任务中的示例。大多数现有的几次拍摄方法不考虑数据班次,因此在数据分布换档时显示降级性能。然而,由于每个任务中的标记样本数量有限的标记样本,因此在几次拍摄学习中解决数据转换问题是不普遍的。针对解决此问题,我们提出了一种新的基于度量的元学习框架,以便在知识图表的帮助下提取任务特定的表示和任务共享表示。因此,任务内的数据偏移可以通过任务共享和特定于任务的表示的组合来组合。拟议的模型是对流行的基准测试和两个构造的新具有挑战性的数据集。评估结果表明了其显着性能。
translated by 谷歌翻译
少量学习致力于在少数样品上培训模型。这些方法中的大多数基于像素级或全局级别特征表示学习模型。但是,使用全局功能可能会丢失本地信息,并且使用像素级别功能可能会丢失图像的上下文语义。此外,这些作品只能在单个级别上衡量它们之间的关系,这并不全面而有效。如果查询图像可以通过三个不同的水平相似度量同时分类很好,则类内的查询图像可以在较小的特征空间中更紧密地分布,产生更多辨别特征映射。由此激励,我们提出了一种新的零件级别嵌入适应图形(PEAG)方法来生成特定于任务特征。此外,提出了一种多级度量学习(MML)方法,其不仅可以计算像素级相似度,而且还考虑了部分级别特征和全局级别特征的相似性。对流行的少量图像识别数据集进行了广泛的实验,证明了与最先进的方法相比的方法的有效性。我们的代码可用于\ url {https:/github.com/chenhaoxing/m2l}。
translated by 谷歌翻译
Humans can quickly learn new visual concepts, perhaps because they can easily visualize or imagine what novel objects look like from different views. Incorporating this ability to hallucinate novel instances of new concepts might help machine vision systems perform better low-shot learning, i.e., learning concepts from few examples. We present a novel approach to low-shot learning that uses this idea. Our approach builds on recent progress in meta-learning ("learning to learn") by combining a meta-learner with a "hallucinator" that produces additional training examples, and optimizing both models jointly. Our hallucinator can be incorporated into a variety of meta-learners and provides significant gains: up to a 6 point boost in classification accuracy when only a single training example is available, yielding state-of-the-art performance on the challenging ImageNet low-shot classification benchmark.
translated by 谷歌翻译
Graph neural networks have achieved significant success in representation learning. However, the performance gains come at a cost; acquiring comprehensive labeled data for training can be prohibitively expensive. Active learning mitigates this issue by searching the unexplored data space and prioritizing the selection of data to maximize model's performance gain. In this paper, we propose a novel method SMARTQUERY, a framework to learn a graph neural network with very few labeled nodes using a hybrid uncertainty reduction function. This is achieved using two key steps: (a) design a multi-stage active graph learning framework by exploiting diverse explicit graph information and (b) introduce label propagation to efficiently exploit known labels to assess the implicit embedding information. Using a comprehensive set of experiments on three network datasets, we demonstrate the competitive performance of our method against state-of-the-arts on very few labeled data (up to 5 labeled nodes per class).
translated by 谷歌翻译
节点分类在各种图形挖掘任务中至关重要。在实践中,实际图通常遵循长尾分布,其中大量类仅由有限的标记节点组成。尽管图神经网络(GNN)在节点分类方面取得了显着改善,但在这种情况下,它们的性能大大降低。主要原因可以归因于由于元任务中不同节点/类分布引起的任务差异(即节点级别和类级别的方差)引起的任务差异,因此元素训练和元检验之间存在巨大的概括差距。因此,为了有效地减轻任务差异的影响,我们在少数弹出的学习设置下提出了一个任务自适应的节点分类框架。具体而言,我们首先在具有丰富标记节点的类中积累了元知识。然后,我们通过提出的任务自适应模块将这些知识转移到具有有限标记的节点的类别中。特别是,为了适应元任务之间的不同节点/类分布,我们建议三个基本模块以执行\ emph {node-level},\ emph {class-level}和\ emph {task-emph {task-level}适应元任务分别。这样,我们的框架可以对不同的元任务进行适应,从而提高元测试任务上的模型概括性能。在四个普遍的节点分类数据集上进行了广泛的实验,证明了我们的框架优于最先进的基线。我们的代码可在https://github.com/songw-sw/tent上提供。
translated by 谷歌翻译