事实证明,图形神经网络(GNN)在图形结构数据的几个预测建模任务中已被证明。在这些任务中,链接预测是许多现实世界应用(例如推荐系统)的基本问题之一。但是,GNN不能免疫对抗攻击,即精心制作的恶意例子,旨在欺骗预测模型。在这项工作中,我们专注于对基于GNN的链接预测模型进行特定的白盒攻击,其中恶意节点的目的是出现在给定目标受害者的推荐节点列表中。为了实现这一目标,攻击者节点还可以指望它直接控制的其他现有同伴的合作,即在网络中注入许多``vicious''节点的能力。具体而言,所有这些恶意节点都可以添加新的边缘或删除现有的节点,从而扰乱原始图。因此,我们提出了野蛮人,一种新颖的框架和一种安装这种链接预测攻击的方法。野蛮人将对手的目标制定为一项优化任务,从而达到了攻击的有效性与所需的恶意资源的稀疏之间的平衡。在现实世界和合成数据集上进行的广泛实验表明,通过野蛮人实施的对抗性攻击确实达到了很高的攻击成功率,但使用少量恶性节点。最后,尽管这些攻击需要完全了解目标模型,但我们表明它们可以成功地转移到其他黑框方法以进行链接预测。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
translated by 谷歌翻译
图表神经网络,一种流行的模型,在各种基于图形的学习任务中有效,已被证明易受对抗攻击的影响。虽然大多数文献侧重于节点级分类任务中的这种脆弱性,但很少努力致力于分析对图形级分类的对抗攻击,这是生物化学和社会网络分析等众多现实生活应用的重要问题。少数现有方法通常需要不切实际的设置,例如访问受害者模型的内部信息,或者是一个不切实际的查询。我们提出了一种新型贝叶斯优化的攻击方法,用于图形分类模型。我们的方法是黑匣子,查询效率和涉及扰动的效率和解析。我们经验验证了所提出的方法对涉及不同图形属性,约束和攻击方式的图形分类任务的效果和灵活性。最后,我们分析了产生的对手样本后面的常见可解释模式,这可能会在图形分类模型的对抗鲁棒性上流出进一步的光。
translated by 谷歌翻译
图表神经网络(GNNS)在行业中,由于各种预测任务的表现令人印象深刻,在行业中获得了显着的采用。然而,单独的性能是不够的。任何广泛部署的机器学习算法都必须强大到对抗性攻击。在这项工作中,我们调查了GNN的这个方面,识别漏洞,并将它们链接到图形属性,可能导致更安全和强大的GNN的开发。具体而言,我们制定任务和模型不可知逃避攻击问题,其中对手修改了测试图以影响任何未知下游任务的性能。提出的算法,盛大($ GR $ APH $ A $ TTACK通过$ N $ eighbors $ D $ Istorration)显示节点邻域的失真在急剧损害预测性能方面是有效的。虽然邻里失真是一个NP难题,但是宏伟设计了通过具有深入$ Q $ -Learning的图形同构网络的新组合的启发式。关于实际数据集的广泛实验表明,平均而言,盛大的速度高达50美元,而不是最先进的技术,同时速度超过100美元。
translated by 谷歌翻译
许多数据挖掘任务依靠图来模拟个人(节点)之间的关系结构。由于关系数据通常很敏感,因此迫切需要评估图形数据中的隐私风险。对数据分析模型的著名隐私攻击是模型反转攻击,该攻击旨在推断培训数据集中的敏感数据并引起极大的隐私问题。尽管它在类似网格的域中取得了成功,但直接应用模型反转攻击(例如图形)导致攻击性能差。这主要是由于未能考虑图的唯一属性。为了弥合这一差距,我们对模型反转攻击对图神经网络(GNNS)进行了系统研究,这是本文中最新的图形分析工具之一。首先,在攻击者可以完全访问目标GNN模型的白色框设置中,我们提出GraphMi来推断私人训练图数据。具体而言,在GraphMi中,提出了一个投影梯度模块来应对图边的离散性并保持图形特征的稀疏性和平滑度。图形自动编码器模块用于有效利用边缘推理的图形拓扑,节点属性和目标模型参数。随机采样模块最终可以采样离散边缘。此外,在攻击者只能查询GNN API并接收分类结果的硬标签黑框设置中,我们根据梯度估计和增强学习(RL-GraphMI)提出了两种方法。我们的实验结果表明,此类防御措施没有足够的有效性,并要求对隐私攻击进行更先进的防御能力。
translated by 谷歌翻译
链接预测,推断图形的未发现或潜在链接,被广泛应用于现实世界中。通过促进图表的标记链接作为训练数据,已经研究了许多基于深度学习的链接预测方法,与非深度方法相比,它们具有主导的预测准确性。但是,恶意制作的训练图的威胁将在深层模型中留下特定的后门,因此,当一些特定的示例被馈入模型时,它将做出错误的预测,定义为后门攻击。这是当前文献中忽略的重要方面。在本文中,我们促使后门攻击对链接预测的概念,并提出链接 - 背门以揭示现有链接预测方法的训练漏洞。具体而言,链接 - 贝克门将假节点与目标链接的节点结合在一起,形成触发器。此外,它通过目标模型的梯度信息来优化触发器。因此,在后排数据集中训练的链接预测模型将预测与目标状态触发的链接。在五个基准数据集和五个表现良好的链接预测模型上进行的广泛实验表明,链接 - 贝克门都在白色框(即目标模型参数可用)和黑色框下实现了最新的攻击成功率。框(即目标模型参数不可用)方案。此外,我们在防御性情况下作证了攻击,结果表明,链接 - 背部门仍然可以成功构建对表现良好的链接预测方法的成功攻击。代码和数据可在https://github.com/seaocn/link-backdoor上获得。
translated by 谷歌翻译
图表神经网络(GNNS)已成功利用在许多现实世界应用中的图形分析任务中。攻击和防御方法之间的竞争也增强了GNN的鲁棒性。在这次竞争中,对抗性培训方法的发展提出了对攻击例子的多样性要求。相比之下,大多数具有特定攻击策略的攻击方法难以满足这种要求。为了解决这个问题,我们提出了GraphAtcher,这是一种新型通用图形攻击框架,可根据图分析任务灵活地调整结构和攻击策略。通过在三个关键组件上的替代培训:基于生成对冲网络(GaN)的多策略攻击发生器(MAG),相似性鉴别器(SD)和攻击鉴别器(AD),产生对手示例。此外,考虑到节点相似性分布的变化,我们介绍了一种新颖的相似性修改率SMR来进行隐秘的攻击。在各种基准数据集上的实验表明,GraphAtcker可以在节点分类,图形分类和链路预测的图形分析任务上实现最先进的攻击性能,无论是否进行了对抗性培训。此外,我们还分析了每个任务的独特特征及其在统一攻击框架中的特定响应。项目代码可在https://github.com/honoluluuuu/graphatter处获得。
translated by 谷歌翻译
图形卷积网络(GCN)已显示出容易受到小型对抗扰动的影响,这成为严重的威胁,并在很大程度上限制了其在关键安全场景中的应用。为了减轻这种威胁,大量的研究工作已致力于增加GCN对对抗攻击的鲁棒性。但是,当前的防御方法通常是为整个图表而设计的,并考虑了全球性能,在保护重要的本地节点免受更强的对抗性靶向攻击方面面临着挑战。在这项工作中,我们提出了一种简单而有效的方法,名为Graph Universal对抗防御(Guard)。与以前的作品不同,Guard可以保护每个单独的节点免受通用防御贴片的攻击,该节点是一次生成的,可以应用于图中的任何节点(节点-Agnostic)。在四个基准数据集上进行的广泛实验表明,我们的方法可显着提高几种已建立的GCN的鲁棒性,以针对多种对抗性攻击,并且胜过大幅度的最先进的防御方法。我们的代码可在https://github.com/edisonleeeeee/guard上公开获取。
translated by 谷歌翻译
图神经网络(GNN)在图形分类和多样化的下游现实世界应用方面取得了巨大成功。尽管他们成功了,但现有的方法要么仅限于结构攻击,要么仅限于本地信息。这要求在图形分类上建立更一般的攻击框架,由于使用全球图表级信息生成本地节点级的对抗示例的复杂性,因此面临重大挑战。为了解决这个“全局到本地”问题,我们提出了一个通用框架CAMA,以通过层次样式操纵图形结构和节点特征来生成对抗性示例。具体而言,我们利用Graph类激活映射及其变体来产​​生与图形分类任务相对应的节点级的重要性。然后,通过算法的启发式设计,我们可以借助节点级别和子图级的重要性在不明显的扰动预算下执行功能和结构攻击。在六个现实世界基准上攻击四个最先进的图形分类模型的实验验证了我们框架的灵活性和有效性。
translated by 谷歌翻译
许多真实数据以图形的形式出现。图表神经网络(GNNS)是一个新的机器学习(ML)模型,已建议完全利用图表数据来构建强大的应用程序。特别地,可以概括到看不见的数据的电感GNN成为主流。机器学习模型在各种任务中表现出很大的潜力,并已在许多真实情景中部署。要培训良好的模型,需要大量的数据以及计算资源,从而导致有价值的知识产权。以前的研究表明,ML模型容易窃取攻击模型,旨在窃取目标模型的功能。然而,大多数人都专注于用图像和文本接受培训的模型。另一方面,对于用图表数据,即GNNS接受培训的模型,已经支付了很少的注意。在本文中,我们通过提出针对电感GNN的第一个模型窃取攻击来填补差距。我们系统地定义了威胁模型,并根据对手的背景知识和目标模型的响应提出六次攻击。我们对六个基准数据集的评估显示,拟议的模型窃取针对GNN的攻击实现了有希望的性能。
translated by 谷歌翻译
隐私性和解释性是实现值得信赖的机器学习的两种重要成分。我们通过图形重建攻击研究了图机学习中这两个方面的相互作用。这里的对手的目的是重建给定模型解释的训练数据的图形结构。根据对手可用的不同种类的辅助信息,我们提出了几种图形重建攻击。我们表明,事后功能解释的其他知识大大提高了这些攻击的成功率。此外,我们详细研究了攻击性能相对于三种不同类别的图形神经网络的解释方法的差异:基于梯度,基于扰动和基于替代模型的方法。虽然基于梯度的解释在图形结构方面显示最多,但我们发现这些解释并不总是在实用程序上得分很高。对于其他两类的解释,隐私泄漏随着解释实用程序的增加而增加。最后,我们提出了基于随机响应机制的防御,以释放大大降低攻击成功率的解释。我们的匿名代码可用。
translated by 谷歌翻译
基于图的异常检测(GAD)由于图表的强大表示能力以及图形采矿技术的最新进展而变得普遍。然而,这些GAD工具暴露了新的攻击表面,讽刺地是由于能够利用数据之间的关系的独特优势。也就是说,攻击者现在可以操纵那些关系(即图形的结构),以允许一些目标节点逃避检测。在本文中,我们通过将新型的针对性结构中毒攻击设计到奇怪的基于代表回归的GAD系统来利用这种脆弱性。特别是,我们为奇怪的攻击制定了奇怪的攻击,作为双级优化问题,在那里关键的技术挑战是有效地解决离散域中的问题。我们提出了一种基于梯度下降的新型攻击方法称为二进制层。与现有技术相比,BinarizedAttack可以更好地使用梯度信息,使其特别适用于解决组合优化问题。此外,我们通过采用它来攻击其他基于代表学习的GAD系统来调查BinarizedAtch的攻击可转换性。我们的综合实验表明,BinarizedAttack非常有效地使目标节点能够避免基于图形的异常检测工具与有限的攻击者的预算,并且在黑箱转移攻击设置中,BinarizedAtck也有效地测试,特别是可以显着改变GAD系统学习的节点嵌入式。因此,我们的研究开辟了学习新型攻击的门,以依靠图形数据的安全分析工具。
translated by 谷歌翻译
最近,图形神经网络(GNN)已被广泛用于开发成功的推荐系统。尽管功能强大,但基于GNN的建议系统很难附上明显的解释,说明为什么特定项目最终在给定用户的建议列表中。确实,解释基于GNN的建议是独特的,而现有的GNN解释方法是不合适的,原因有两个。首先,传统的GNN解释方法是为节点,边缘或图形分类任务而不是排名而设计的,如推荐系统中。其次,标准的机器学习解释通常旨在支持熟练的决策者。相反,建议是为任何最终用户设计的,因此应以用户理解的方式提供其解释。在这项工作中,我们提出了润滑脂,这是一种新的方法,用于解释任何基于黑盒GNN的建议系统提供的建议。具体而言,Grease首先在目标用户项目对及其$ L $ -HOP社区上训练替代模型。然后,它通过找到最佳的邻接矩阵扰动来捕获足够和必要的条件,分别推荐一个项目,从而生成事实和反事实解释。在现实世界数据集上进行的实验结果表明,油脂可以为流行的基于GNN的推荐模型产生简洁有效的解释。
translated by 谷歌翻译
图形神经网络(GNNS)在各种现实世界应用中取得了有希望的性能。然而,最近的研究表明,GNN易受对抗性发作的影响。在本文中,我们研究了关于图表 - 图 - 图注射攻击(GIA)的最近引入的现实攻击情景。在GIA场景中,对手无法修改输入图的现有链路结构和节点属性,而是通过将逆势节点注入到它中来执行攻击。我们对GIA环境下GNN的拓扑脆弱性分析,基于该拓扑结构,我们提出了用于有效注射攻击的拓扑缺陷图注射攻击(TDGIA)。 TDGIA首先介绍了拓扑有缺陷的边缘选择策略,可以选择与注入的原始节点连接。然后,它设计平滑功能优化目标,以生成注入节点的功能。大规模数据集的广泛实验表明,TDGIA可以一致而明显优于攻击数十个防御GNN模型中的各种攻击基线。值得注意的是,来自TDGIA的目标GNNS上的性能下降比KDD-CUP 2020上的数百个提交所带来的最佳攻击解决方案所带来的损坏多于两倍。
translated by 谷歌翻译
尽管深度神经网络在图形分析方面取得了巨大的成功,但最近的工作表明它们容易受到对抗攻击的影响。与对图像分类的对抗性攻击相比,在图形上执行对抗性攻击更具挑战性,因为图形的相邻矩阵的离散性和非差异性质。在这项工作中,我们提出了集群攻击 - 对节点分类的图形注射攻击(GIA),该攻击将假节点注入原始图中,以使某些受害者节点的图形神经网络(GNN)的性能退化,同时将其他节点视为其他节点几乎没有。我们证明,GIA问题可以等效地作为图形聚类问题。因此,可以在图形聚类的上下文中解决邻接矩阵的离散优化问题。特别是,我们建议通过对受害者漏洞度量来衡量受害者节点之间的相似性,这与受害者节点将如何受到注入的假节点的影响有关,并相应地将受害者节点群集成。我们的攻击是以实用且不明显的基于查询的黑盒方式进行的,图表上只有几个节点可以访问。理论分析和广泛的实验通过仅使用少量查询来欺骗节点分类器,证明了我们方法的有效性。
translated by 谷歌翻译
鉴于他们的普及和应用程序的多样性,图形神经网络(GNNS)越来越重要。然而,对对抗性袭击的脆弱性的现有研究依赖于相对较小的图形。我们解决了这个差距并研究了如何在规模攻击和捍卫GNN。我们提出了两个稀疏感知的一阶优化攻击,尽管优化了在节点数量中的许多参数上优化了有效的表示。我们表明,普通的替代损失并不适合全球对GNN的攻击。我们的替代品可以加倍攻击力量。此外,为了提高GNNS的可靠性,我们设计了强大的聚合函数,软中位,导致所有尺度的有效防御。我们评估了我们的攻击和防御与图形的标准GNN,与以前的工作相比大于100倍以上。我们甚至通过将技术扩展到可伸缩的GNN来进一步缩放一个数量级。
translated by 谷歌翻译
图形神经网络(GNN)已被广泛应用于各种领域,以通过图形结构数据学习。在各种任务(例如节点分类和图形分类)中,他们对传统启发式方法显示了显着改进。但是,由于GNN严重依赖于平滑的节点特征而不是图形结构,因此在链接预测中,它们通常比简单的启发式方法表现出差的性能,例如,结构信息(例如,重叠的社区,学位和最短路径)至关重要。为了解决这一限制,我们建议邻里重叠感知的图形神经网络(NEO-GNNS),这些神经网络(NEO-GNNS)从邻接矩阵中学习有用的结构特征,并估算了重叠的邻域以进行链接预测。我们的Neo-Gnns概括了基于社区重叠的启发式方法,并处理重叠的多跳社区。我们在开放图基准数据集(OGB)上进行的广泛实验表明,NEO-GNNS始终在链接预测中实现最新性能。我们的代码可在https://github.com/seongjunyun/neo_gnns上公开获取。
translated by 谷歌翻译
图形神经网络(GNNS)在许多图形挖掘任务中取得了巨大的成功,这些任务从消息传递策略中受益,该策略融合了局部结构和节点特征,从而为更好的图表表示学习。尽管GNN成功,并且与其他类型的深神经网络相似,但发现GNN容易受到图形结构和节点特征的不明显扰动。已经提出了许多对抗性攻击,以披露在不同的扰动策略下创建对抗性例子的GNN的脆弱性。但是,GNNS对成功后门攻击的脆弱性直到最近才显示。在本文中,我们披露了陷阱攻击,这是可转移的图形后门攻击。核心攻击原则是用基于扰动的触发器毒化训练数据集,这可以导致有效且可转移的后门攻击。图形的扰动触发是通过通过替代模型的基于梯度的得分矩阵在图形结构上执行扰动动作来生成的。与先前的作品相比,陷阱攻击在几种方面有所不同:i)利用替代图卷积网络(GCN)模型来生成基于黑盒的后门攻击的扰动触发器; ii)它产生了没有固定模式的样品特异性扰动触发器; iii)在使用锻造中毒训练数据集训练时,在GNN的背景下,攻击转移到了不同​​的GNN模型中。通过对四个现实世界数据集进行广泛的评估,我们证明了陷阱攻击使用四个现实世界数据集在四个不同流行的GNN中构建可转移的后门的有效性
translated by 谷歌翻译
图形神经网络(GNNS)在建模图形结构数据方面表明了它们的能力。但是,实际图形通常包含结构噪声并具有有限的标记节点。当在这些图表中培训时,GNN的性能会显着下降,这阻碍了许多应用程序的GNN。因此,与有限标记的节点开发抗噪声GNN是重要的。但是,这是一个相当有限的工作。因此,我们研究了在具有有限标记节点的嘈杂图中开发鲁棒GNN的新问题。我们的分析表明,嘈杂的边缘和有限的标记节点都可能损害GNN的消息传递机制。为减轻这些问题,我们提出了一种新颖的框架,该框架采用嘈杂的边缘作为监督,以学习去噪和密集的图形,这可以减轻或消除嘈杂的边缘,并促进GNN的消息传递,以缓解有限标记节点的问题。生成的边缘还用于规则地将具有标记平滑度的未标记节点的预测规范化,以更好地列车GNN。实验结果对现实世界数据集展示了在具有有限标记节点的嘈杂图中提出框架的稳健性。
translated by 谷歌翻译
在本文中,我们研究了具有差异隐私(DP)的学习图神经网络(GNN)的问题。我们提出了一种基于聚合扰动(GAP)的新型差异私有GNN,该GNN为GNN的聚合函数添加了随机噪声,以使单个边缘(边缘级隐私)或单个节点的存在统计上的存在及其所有邻接边缘( - 级别的隐私)。 GAP的新体系结构是根据私人学习的细节量身定制的,由三个单独的模块组成:(i)编码器模块,我们在不依赖边缘信息的情况下学习私人节点嵌入; (ii)聚合模块,其中我们根据图结构计算嘈杂的聚合节点嵌入; (iii)分类模块,我们在私有聚合上训练神经网络进行节点分类,而无需进一步查询图表。 GAP比以前的方法的主要优势在于,它可以从多跳社区的聚合中受益,并保证边缘级别和节点级别的DP不仅用于培训,而且可以推断出培训的隐私预算以外的额外费用。我们使用R \'Enyi DP来分析GAP的正式隐私保证,并在三个真实世界图数据集上进行经验实验。我们证明,与最先进的DP-GNN方法和天真的MLP基线相比,GAP提供了明显更好的准确性私人权衡权衡。
translated by 谷歌翻译