图形神经网络(GNNS)在建模图形结构数据方面表明了它们的能力。但是,实际图形通常包含结构噪声并具有有限的标记节点。当在这些图表中培训时,GNN的性能会显着下降,这阻碍了许多应用程序的GNN。因此,与有限标记的节点开发抗噪声GNN是重要的。但是,这是一个相当有限的工作。因此,我们研究了在具有有限标记节点的嘈杂图中开发鲁棒GNN的新问题。我们的分析表明,嘈杂的边缘和有限的标记节点都可能损害GNN的消息传递机制。为减轻这些问题,我们提出了一种新颖的框架,该框架采用嘈杂的边缘作为监督,以学习去噪和密集的图形,这可以减轻或消除嘈杂的边缘,并促进GNN的消息传递,以缓解有限标记节点的问题。生成的边缘还用于规则地将具有标记平滑度的未标记节点的预测规范化,以更好地列车GNN。实验结果对现实世界数据集展示了在具有有限标记节点的嘈杂图中提出框架的稳健性。
translated by 谷歌翻译
从消息传递机制中受益,图形神经网络(GNN)在图形数据上的繁荣任务上已经成功。但是,最近的研究表明,攻击者可以通过恶意修改图形结构来灾难性地降低GNN的性能。解决此问题的直接解决方案是通过在两个末端节点的成对表示之间学习度量函数来建模边缘权重,该指标函数试图将低权重分配给对抗边缘。现有方法使用监督GNN学到的原始功能或表示形式来对边缘重量进行建模。但是,两种策略都面临着一些直接问题:原始特征不能代表节点的各种特性(例如结构信息),而受监督的GNN学到的表示可能会遭受分类器在中毒图上的差异性能。我们需要携带特征信息和尽可能糊状的结构信息并且对结构扰动不敏感的表示形式。为此,我们提出了一条名为stable的无监督管道,以优化图形结构。最后,我们将精心设计的图输入到下游分类器中。对于这一部分,我们设计了一个高级GCN,可显着增强香草GCN的鲁棒性,而不会增加时间复杂性。在四个现实世界图基准上进行的广泛实验表明,稳定的表现优于最先进的方法,并成功防御各种攻击。
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
图形注意力网络(GAT)是处理图数据的有用深度学习模型。但是,最近的作品表明,经典的GAT容易受到对抗攻击的影响。它在轻微的扰动下急剧降低。因此,如何增强GAT的鲁棒性是一个关键问题。本文提出了强大的GAT(Rogat),以根据注意机制的修订来改善GAT的鲁棒性。与原始的GAT不同,该GAT使用注意力机制的不同边缘,但仍然对扰动敏感,Rogat逐渐增加了动态注意力评分并提高了稳健性。首先,Rogat根据平滑度假设修改边缘的重量,这对于普通图很常见。其次,Rogat进一步修改了功能以抑制功能的噪声。然后,由动态边缘的重量产生额外的注意力评分,可用于减少对抗性攻击的影响。针对引文数据的引文数据的针对目标和不靶向攻击的不同实验表明,Rogat的表现优于最近的大多数防御方法。
translated by 谷歌翻译
图神经网络(GNN)正在在各种应用领域中实现出色的性能。但是,GNN容易受到输入数据中的噪声和对抗性攻击。在噪音和对抗性攻击方面使GNN坚固是一个重要的问题。现有的GNN防御方法在计算上是要求的,并且不可扩展。在本文中,我们提出了一个通用框架,用于鲁棒化的GNN称为加权laplacian GNN(RWL-GNN)。该方法将加权图拉普拉斯学习与GNN实现结合在一起。所提出的方法受益于Laplacian矩阵的积极半定义特性,具有光滑度和潜在特征,通过制定统一的优化框架,从而确保丢弃对抗性/嘈杂的边缘,并适当加权图中的相关连接。为了进行演示,实验是通过图形卷积神经网络(GCNN)体系结构进行的,但是,所提出的框架很容易适合任何现有的GNN体系结构。使用基准数据集的仿真结果建立了所提出方法的疗效,无论是准确性还是计算效率。可以在https://github.com/bharat-runwal/rwl-gnn上访问代码。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have been widely applied in the semi-supervised node classification task, where a key point lies in how to sufficiently leverage the limited but valuable label information. Most of the classical GNNs solely use the known labels for computing the classification loss at the output. In recent years, several methods have been designed to additionally utilize the labels at the input. One part of the methods augment the node features via concatenating or adding them with the one-hot encodings of labels, while other methods optimize the graph structure by assuming neighboring nodes tend to have the same label. To bring into full play the rich information of labels, in this paper, we present a label-enhanced learning framework for GNNs, which first models each label as a virtual center for intra-class nodes and then jointly learns the representations of both nodes and labels. Our approach could not only smooth the representations of nodes belonging to the same class, but also explicitly encode the label semantics into the learning process of GNNs. Moreover, a training node selection technique is provided to eliminate the potential label leakage issue and guarantee the model generalization ability. Finally, an adaptive self-training strategy is proposed to iteratively enlarge the training set with more reliable pseudo labels and distinguish the importance of each pseudo-labeled node during the model training process. Experimental results on both real-world and synthetic datasets demonstrate our approach can not only consistently outperform the state-of-the-arts, but also effectively smooth the representations of intra-class nodes.
translated by 谷歌翻译
图形神经网络(GNN)是用于建模图数据的流行机器学习方法。许多GNN在同质图上表现良好,同时在异质图上表现不佳。最近,一些研究人员将注意力转移到设计GNN,以通过调整消息传递机制或扩大消息传递的接收场来设计GNN。与从模型设计的角度来减轻异性疾病问题的现有作品不同,我们建议通过重新布线结构来从正交角度研究异质图,以减少异质性并使传统GNN的表现更好。通过全面的经验研究和分析,我们验证了重新布线方法的潜力。为了充分利用其潜力,我们提出了一种名为Deep Hertophilly Graph Rewiring(DHGR)的方法,以通过添加同粒子边缘和修剪异质边缘来重新线图。通过比较节点邻居的标签/特征 - 分布的相似性来确定重新布线的详细方法。此外,我们为DHGR设计了可扩展的实现,以确保高效率。 DHRG可以轻松地用作任何GNN的插件模块,即图形预处理步骤,包括同型和异性的GNN,以提高其在节点分类任务上的性能。据我们所知,这是研究图形的第一部重新绘图图形的作品。在11个公共图数据集上进行的广泛实验证明了我们提出的方法的优势。
translated by 谷歌翻译
众所周知,图形神经网络(GNN)的成功高度依赖于丰富的人类通知数据,这在实践中努力获得,并且并非总是可用的。当只有少数标记的节点可用时,如何开发高效的GNN仍在研究。尽管已证明自我训练对于半监督学习具有强大的功能,但其在图形结构数据上的应用可能会失败,因为(1)不利用较大的接收场来捕获远程节点相互作用,这加剧了传播功能的难度 - 标记节点到未标记节点的标签模式; (2)有限的标记数据使得在不同节点类别中学习良好的分离决策边界而不明确捕获基本的语义结构,这是一项挑战。为了解决捕获信息丰富的结构和语义知识的挑战,我们提出了一个新的图数据增强框架,AGST(增强图自训练),该框架由两个新的(即结构和语义)增强模块构建。 GST骨干。在这项工作中,我们研究了这个新颖的框架是否可以学习具有极有限标记节点的有效图预测模型。在有限标记节点数据的不同情况下,我们对半监督节点分类进行全面评估。实验结果证明了新的数据增强框架对节点分类的独特贡献,几乎没有标记的数据。
translated by 谷歌翻译
我们为旨在降低公平性的对抗神经网络(GNN)的对抗性攻击(GNN)的存在和有效性提供了证据。这些攻击可能不利基于GNN的节点分类中的特定节点子组,其中基础网络的节点具有敏感的属性,例如种族或性别。我们进行了定性和实验分析,以解释对抗链接注射如何损害GNN预测的公平性。例如,攻击者可以通过在属于相反子组和相反类标签的节点之间注入对抗性链接来损害基于GNN的节点分类的公平性。我们在经验数据集上的实验表明,对抗公平性攻击可以显着降低GNN预测的公平性(攻击是有效的),其扰动率较低(攻击是有效的),并且没有明显的准确性下降(攻击是欺骗性的)。这项工作证明了GNN模型对对抗公平性攻击的脆弱性。我们希望我们的发现在社区中提高人们对这个问题的认识,并为GNN模型的未来发展奠定了基础,这些模型对这种攻击更为强大。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)已实现了节点分类的最新性能。但是,大多数现有的GNN会遭受图形不平衡问题。在许多实际情况下,节点类都是不平衡的,其中一些多数类构成了图的大部分部分。 GNN中的消息传播机制将进一步扩大这些多数类的主导地位,从而导致次级分类性能。在这项工作中,我们试图通过生成少数族裔类实例来平衡培训数据,从而扩展了以前的基于过度采样的技术来解决这个问题。此任务是不平凡的,因为这些技术的设计是实例是独立的。忽视关系信息会使此过采样过程变得复杂。此外,节点分类任务通常仅使用少数标记的节点进行半监督设置,从而为少数族裔实例的产生提供了不足的监督。生成的低质量新节点会损害训练有素的分类器。在这项工作中,我们通过在构造的嵌入空间中综合新节点来解决这些困难,该节点编码节点属性和拓扑信息。此外,对边缘生成器进行同时训练,以建模图结构并为新样品提供关系。为了进一步提高数据效率,我们还探索合成的混合``中间''节点在此过度采样过程中利用多数类的节点。对现实世界数据集的实验验证了我们提出的框架的有效性。
translated by 谷歌翻译
我们通过形式化节点标签的异质性(即连接的节点倾向于具有不同的标签)和GNN与对抗性攻击的稳健性来弥合图形神经网络(GNN)的两个研究方向。我们的理论和经验分析表明,对于同质图数据,有影响力的结构攻击始终导致同质性降低,而对于异性图数据,同质级别的变化取决于节点度。这些见解对防御对现实图形的攻击具有实际含义:我们推断出分离自我和邻居限制的汇总器,这是一种已确定的设计原则,可以显着改善异性图数据的预测,还可以为增强的鲁棒性提供稳健性gnns。我们的综合实验表明,与表现最好的未接种模型相比,GNN仅采用这种设计可以提高经验和可证明的鲁棒性。此外,与表现最佳的疫苗接种模型相比,这种设计与对抗性攻击的明确防御机制相结合,可提高稳健性,攻击性能在攻击下提高18.33%。
translated by 谷歌翻译
图表学习目的旨在将节点内容与图形结构集成以学习节点/图表示。然而,发现许多现有的图形学习方法在具有高异性级别的数据上不能很好地工作,这是不同类标签之间很大比例的边缘。解决这个问题的最新努力集中在改善消息传递机制上。但是,尚不清楚异质性是否确实会损害图神经网络(GNNS)的性能。关键是要展现一个节点与其直接邻居之间的关系,例如它们是异性还是同质性?从这个角度来看,我们在这里研究了杂质表示在披露连接节点之间的关系之前/之后的杂音表示的作用。特别是,我们提出了一个端到端框架,该框架既学习边缘的类型(即异性/同质性),并利用边缘类型的信息来提高图形神经网络的表现力。我们以两种不同的方式实施此框架。具体而言,为了避免通过异质边缘传递的消息,我们可以通过删除边缘分类器鉴定的异性边缘来优化图形结构。另外,可以利用有关异性邻居的存在的信息进行特征学习,因此,设计了一种混合消息传递方法来汇总同质性邻居,并根据边缘分类使异性邻居多样化。广泛的实验表明,在整个同质级别的多个数据集上,通过在多个数据集上提出的框架对GNN的绩效提高了显着提高。
translated by 谷歌翻译
图形神经网络是一种强大的深度学习工具,用于建模图形结构化数据,在众多图形学习任务上表现出了出色的性能。为了解决深图学习中的数据噪声和数据稀缺性问题,最近有关图形数据的研究已加剧。但是,常规数据增强方法几乎无法处理具有多模式性的非欧几里得空间中定义的图形结构化数据。在这项调查中,我们正式提出了图数据扩展的问题,并进一步审查了代表性技术及其在不同深度学习问题中的应用。具体而言,我们首先提出了图形数据扩展技术的分类法,然后通过根据增强信息方式对相关工作进行分类,从而提供结构化的审查。此外,我们总结了以数据为中心的深图学习中两个代表性问题中图数据扩展的应用:(1)可靠的图形学习,重点是增强输入图的实用性以及通过图数据增强的模型容量; (2)低资源图学习,其针对通过图数据扩大标记的训练数据量表的目标。对于每个问题,我们还提供层次结构问题分类法,并审查与图数据增强相关的现有文献。最后,我们指出了有希望的研究方向和未来研究的挑战。
translated by 谷歌翻译
图形神经网络(GNNS)在提供图形结构时良好工作。但是,这种结构可能并不总是在现实世界应用中可用。该问题的一个解决方案是推断任务特定的潜在结构,然后将GNN应用于推断的图形。不幸的是,可能的图形结构的空间与节点的数量超级呈指数,因此任务特定的监督可能不足以学习结构和GNN参数。在这项工作中,我们提出了具有自我监督或拍打的邻接和GNN参数的同时学习,这是通过自我监督来推断图形结构的更多监督的方法。一个综合实验研究表明,缩小到具有数十万个节点的大图和胜过了几种模型,以便在已建立的基准上学习特定于任务的图形结构。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have attracted increasing attention in recent years and have achieved excellent performance in semi-supervised node classification tasks. The success of most GNNs relies on one fundamental assumption, i.e., the original graph structure data is available. However, recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph, making it necessary to learn comprehensive and robust graph structures for downstream tasks, rather than relying only on the raw graph structure. In light of this, we seek to learn optimal graph structures for downstream tasks and propose a novel framework for semi-supervised classification. Specifically, based on the structural context information of graph and node representations, we encode the complex interactions in semantics and generate semantic graphs to preserve the global structure. Moreover, we develop a novel multi-measure attention layer to optimize the similarity rather than prescribing it a priori, so that the similarity can be adaptively evaluated by integrating measures. These graphs are fused and optimized together with GNN towards semi-supervised classification objective. Extensive experiments and ablation studies on six real-world datasets clearly demonstrate the effectiveness of our proposed model and the contribution of each component.
translated by 谷歌翻译
Graph structure learning (GSL), which aims to learn the adjacency matrix for graph neural networks (GNNs), has shown great potential in boosting the performance of GNNs. Most existing GSL works apply a joint learning framework where the estimated adjacency matrix and GNN parameters are optimized for downstream tasks. However, as GSL is essentially a link prediction task, whose goal may largely differ from the goal of the downstream task. The inconsistency of these two goals limits the GSL methods to learn the potential optimal graph structure. Moreover, the joint learning framework suffers from scalability issues in terms of time and space during the process of estimation and optimization of the adjacency matrix. To mitigate these issues, we propose a graph structure refinement (GSR) framework with a pretrain-finetune pipeline. Specifically, The pre-training phase aims to comprehensively estimate the underlying graph structure by a multi-view contrastive learning framework with both intra- and inter-view link prediction tasks. Then, the graph structure is refined by adding and removing edges according to the edge probabilities estimated by the pre-trained model. Finally, the fine-tuning GNN is initialized by the pre-trained model and optimized toward downstream tasks. With the refined graph structure remaining static in the fine-tuning space, GSR avoids estimating and optimizing graph structure in the fine-tuning phase which enjoys great scalability and efficiency. Moreover, the fine-tuning GNN is boosted by both migrating knowledge and refining graphs. Extensive experiments are conducted to evaluate the effectiveness (best performance on six benchmark datasets), efficiency, and scalability (13.8x faster using 32.8% GPU memory compared to the best GSL baseline on Cora) of the proposed model.
translated by 谷歌翻译
Graph neural networks (GNNs) have been increasingly deployed in various applications that involve learning on non-Euclidean data. However, recent studies show that GNNs are vulnerable to graph adversarial attacks. Although there are several defense methods to improve GNN robustness by eliminating adversarial components, they may also impair the underlying clean graph structure that contributes to GNN training. In addition, few of those defense models can scale to large graphs due to their high computational complexity and memory usage. In this paper, we propose GARNET, a scalable spectral method to boost the adversarial robustness of GNN models. GARNET first leverages weighted spectral embedding to construct a base graph, which is not only resistant to adversarial attacks but also contains critical (clean) graph structure for GNN training. Next, GARNET further refines the base graph by pruning additional uncritical edges based on probabilistic graphical model. GARNET has been evaluated on various datasets, including a large graph with millions of nodes. Our extensive experiment results show that GARNET achieves adversarial accuracy improvement and runtime speedup over state-of-the-art GNN (defense) models by up to 13.27% and 14.7x, respectively.
translated by 谷歌翻译
Recent years have witnessed great success in handling graph-related tasks with Graph Neural Networks (GNNs). Despite their great academic success, Multi-Layer Perceptrons (MLPs) remain the primary workhorse for practical industrial applications. One reason for this academic-industrial gap is the neighborhood-fetching latency incurred by data dependency in GNNs, which make it hard to deploy for latency-sensitive applications that require fast inference. Conversely, without involving any feature aggregation, MLPs have no data dependency and infer much faster than GNNs, but their performance is less competitive. Motivated by these complementary strengths and weaknesses, we propose a Graph Self-Distillation on Neighborhood (GSDN) framework to reduce the gap between GNNs and MLPs. Specifically, the GSDN framework is based purely on MLPs, where structural information is only implicitly used as prior to guide knowledge self-distillation between the neighborhood and the target, substituting the explicit neighborhood information propagation as in GNNs. As a result, GSDN enjoys the benefits of graph topology-awareness in training but has no data dependency in inference. Extensive experiments have shown that the performance of vanilla MLPs can be greatly improved with self-distillation, e.g., GSDN improves over stand-alone MLPs by 15.54\% on average and outperforms the state-of-the-art GNNs on six datasets. Regarding inference speed, GSDN infers 75X-89X faster than existing GNNs and 16X-25X faster than other inference acceleration methods.
translated by 谷歌翻译
图形神经网络(GNN)在许多基于图的任务中表现出强大的表示能力。具体而言,由于其简单性和性能优势,GNN(例如APPNP)的解耦结构变得流行。但是,这些GNN的端到端培训使它们在计算和记忆消耗方面效率低下。为了应对这些局限性,在这项工作中,我们为图形神经网络提供了交替的优化框架,不需要端到端培训。在不同设置下进行的广泛实验表明,所提出的算法的性能与现有的最新算法相当,但具有更好的计算和记忆效率。此外,我们表明我们的框架可以利用优势来增强现有的脱钩GNN。
translated by 谷歌翻译
节点分类是基于图形的基本任务,旨在预测未标记的节点的类别,对于哪种图形神经网络(GNN)是最新方法。在当前的GNN中,培训节点(或培训样本)在整个培训过程中得到平等的治疗。但是,样品的质量根据图结构而变化很大。因此,GNN的性能可能会受到两种类型的低质量样本的损害:(1)位于连接相邻类的类边界附近的类间节点。这些节点的表示缺乏其相应类的典型特征。由于GNN是数据驱动的方法,因此对这些节点进行培训可能会降低准确性。 (2)标记的节点。在实际图中,节点通常被错误标记,这会大大降低GNN的鲁棒性。为了减轻低质量样品的有害效果,我们提出clnode(用于节点分类的课程学习),该cl虫根据其质量自动调整样品的权重。具体而言,我们首先设计了基于邻里的难度测量器来准确测量样品的质量。随后,基于这些测量值,我们采用培训调度程序来调整每个训练时期的样本权重。为了评估clnode的有效性,我们通过将其应用于四个代表性的骨干GNN来进行广泛的实验。六个现实世界网络上的实验结果表明,clnode是一个通用框架,可以与各种GNN结合使用,以提高其准确性和鲁棒性。
translated by 谷歌翻译