图形神经网络(GNN)已被广泛应用于各种领域,以通过图形结构数据学习。在各种任务(例如节点分类和图形分类)中,他们对传统启发式方法显示了显着改进。但是,由于GNN严重依赖于平滑的节点特征而不是图形结构,因此在链接预测中,它们通常比简单的启发式方法表现出差的性能,例如,结构信息(例如,重叠的社区,学位和最短路径)至关重要。为了解决这一限制,我们建议邻里重叠感知的图形神经网络(NEO-GNNS),这些神经网络(NEO-GNNS)从邻接矩阵中学习有用的结构特征,并估算了重叠的邻域以进行链接预测。我们的Neo-Gnns概括了基于社区重叠的启发式方法,并处理重叠的多跳社区。我们在开放图基准数据集(OGB)上进行的广泛实验表明,NEO-GNNS始终在链接预测中实现最新性能。我们的代码可在https://github.com/seongjunyun/neo_gnns上公开获取。
translated by 谷歌翻译
在本文中,我们提供了一种使用图形神经网络(GNNS)的理论,用于多节点表示学习(我们有兴趣学习一组多个节点的表示)。我们知道GNN旨在学习单节点表示。当我们想学习涉及多个节点的节点集表示时,先前作品中的常见做法是直接将GNN学习的多节点表示与节点集的关节表示。在本文中,我们显示了这种方法的基本限制,即无法捕获节点集中节点之间的依赖性,并且认为直接聚合各个节点表示不会导致多个节点的有效关节表示。然后,我们注意到,以前的一些成功的工作作品用于多节点表示学习,包括密封,距离编码和ID-GNN,所有使用的节点标记。这些方法根据应用GNN之前的与目标节点集的关系,首先标记图中的节点。然后,在标记的图表中获得的节点表示被聚合到节点集表示中。通过调查其内部机制,我们将这些节点标记技术统一到单个和最基本的形式,即标记技巧。我们证明,通过标记技巧,可以获得足够富有表现力的GNN学习最具表现力的节点集表示,因此原则上可以解决节点集的任何联合学习任务。关于一个重要的双节点表示学习任务,链接预测,验证了我们理论的实验。我们的工作建立了使用GNN在节点集上使用GNN进行联合预测任务的理论基础。
translated by 谷歌翻译
Link prediction is a key problem for network-structured data. Link prediction heuristics use some score functions, such as common neighbors and Katz index, to measure the likelihood of links. They have obtained wide practical uses due to their simplicity, interpretability, and for some of them, scalability. However, every heuristic has a strong assumption on when two nodes are likely to link, which limits their effectiveness on networks where these assumptions fail. In this regard, a more reasonable way should be learning a suitable heuristic from a given network instead of using predefined ones. By extracting a local subgraph around each target link, we aim to learn a function mapping the subgraph patterns to link existence, thus automatically learning a "heuristic" that suits the current network. In this paper, we study this heuristic learning paradigm for link prediction. First, we develop a novel γ-decaying heuristic theory. The theory unifies a wide range of heuristics in a single framework, and proves that all these heuristics can be well approximated from local subgraphs. Our results show that local subgraphs reserve rich information related to link existence. Second, based on the γ-decaying theory, we propose a new method to learn heuristics from local subgraphs using a graph neural network (GNN). Its experimental results show unprecedented performance, working consistently well on a wide range of problems.
translated by 谷歌翻译
链接预测是一项重要的任务,在各个域中具有广泛的应用程序。但是,大多数现有的链接预测方法都假定给定的图遵循同质的假设,并设计基于相似性的启发式方法或表示学习方法来预测链接。但是,许多现实世界图是异性图,同义假设不存在,这挑战了现有的链接预测方法。通常,在异性图中,有许多引起链接形成的潜在因素,并且两个链接的节点在一个或两个因素中往往相似,但在其他因素中可能是不同的,导致总体相似性较低。因此,一种方法是学习每个节点的分离表示形式,每个矢量捕获一个因子上的节点的潜在表示,这铺平了一种方法来模拟异性图中的链接形成,从而导致更好的节点表示学习和链接预测性能。但是,对此的工作非常有限。因此,在本文中,我们研究了一个新的问题,该问题是在异性图上进行链接预测的分离表示学习。我们提出了一种新颖的框架分解,可以通过建模链接形成并执行感知因素的消息来学习以促进链接预测来学习解开的表示形式。在13个现实世界数据集上进行的广泛实验证明了Disenlink对异性恋和血友病图的链接预测的有效性。我们的代码可从https://github.com/sjz5202/disenlink获得
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
Inferring missing links or detecting spurious ones based on observed graphs, known as link prediction, is a long-standing challenge in graph data analysis. With the recent advances in deep learning, graph neural networks have been used for link prediction and have achieved state-of-the-art performance. Nevertheless, existing methods developed for this purpose are typically discriminative, computing features of local subgraphs around two neighboring nodes and predicting potential links between them from the perspective of subgraph classification. In this formalism, the selection of enclosing subgraphs and heuristic structural features for subgraph classification significantly affects the performance of the methods. To overcome this limitation, this paper proposes a novel and radically different link prediction algorithm based on the network reconstruction theory, called GraphLP. Instead of sampling positive and negative links and heuristically computing the features of their enclosing subgraphs, GraphLP utilizes the feature learning ability of deep-learning models to automatically extract the structural patterns of graphs for link prediction under the assumption that real-world graphs are not locally isolated. Moreover, GraphLP explores high-order connectivity patterns to utilize the hierarchical organizational structures of graphs for link prediction. Our experimental results on all common benchmark datasets from different applications demonstrate that the proposed method consistently outperforms other state-of-the-art methods. Unlike the discriminative neural network models used for link prediction, GraphLP is generative, which provides a new paradigm for neural-network-based link prediction.
translated by 谷歌翻译
链接预测是图神经网络(GNN)的重要应用。链接预测的大多数现有GNN基于一维Weisfeiler-Lehman(1-WL)测试。 1-wl-gnn首先通过迭代的相邻节点特征来计算中心,然后通过汇总成对节点表示来获得链接表示。正如先前的作品所指出的那样,这两步过程会导致较低的区分功能,因为自然而然地学习节点级表示而不是链接级别。在本文中,我们研究了一种完全不同的方法,该方法可以基于\ textit {二维WEISFEILER-LEHMAN(2-WL)测试直接获得节点对(链接)表示。 2-WL测试直接使用链接(2个小说)作为消息传递单元而不是节点,因此可以直接获得链接表示。我们理论上分析了2-WL测试的表达能力以区分非晶状体链接,并证明其优越的链接与1-WL相比。基于不同的2-WL变体,我们提出了一系列用于链路预测的新型2-WL-GNN模型。在广泛的现实数据集上进行的实验证明了它们对最先进的基线的竞争性能以及优于普通1-WL-GNN的优势。
translated by 谷歌翻译
最近,图形神经网络(GNN)通过利用图形结构和节点特征的知识来表现出图表表示的显着性能。但是,他们中的大多数都有两个主要限制。首先,GNN可以通过堆叠更多的层来学习高阶结构信息,但由于过度光滑的问题,无法处理较大的深度。其次,由于昂贵的计算成本和高内存使用情况,在大图上应用这些方法并不容易。在本文中,我们提出了节点自适应特征平滑(NAFS),这是一种简单的非参数方法,该方法构建了没有参数学习的节点表示。 NAFS首先通过特征平滑提取每个节点及其不同啤酒花的邻居的特征,然后自适应地结合了平滑的特征。此外,通过不同的平滑策略提取的平滑特征的合奏可以进一步增强构建的节点表示形式。我们在两个不同的应用程序方案上对四个基准数据集进行实验:节点群集和链接预测。值得注意的是,具有功能合奏的NAFS优于这些任务上最先进的GNN,并减轻上述大多数基于学习的GNN对应物的两个限制。
translated by 谷歌翻译
基于变压器的模型已在各个领域(例如自然语言处理和计算机视觉)中广泛使用并实现了最先进的性能。最近的作品表明,变压器也可以推广到图形结构化数据。然而,由于技术挑战,诸如节点数量和非本地聚集的技术挑战之类的技术挑战,因此成功限于小规模图,这通常会导致对常规图神经网络的概括性能。在本文中,为了解决这些问题,我们提出了可变形的图形变压器(DGT),以动态采样的键和值对进行稀疏注意。具体而言,我们的框架首先构建具有各种标准的多个节点序列,以考虑结构和语义接近。然后,将稀疏的注意力应用于节点序列,以减少计算成本,以学习节点表示。我们还设计简单有效的位置编码,以捕获节点之间的结构相似性和距离。实验表明,我们的新型图形变压器始终胜过现有的基于变压器的模型,并且与8个图形基准数据集(包括大型图形)的最新模型相比,与最新的模型相比表现出竞争性能。
translated by 谷歌翻译
Link prediction is a crucial problem in graph-structured data. Due to the recent success of graph neural networks (GNNs), a variety of GNN-based models were proposed to tackle the link prediction task. Specifically, GNNs leverage the message passing paradigm to obtain node representation, which relies on link connectivity. However, in a link prediction task, links in the training set are always present while ones in the testing set are not yet formed, resulting in a discrepancy of the connectivity pattern and bias of the learned representation. It leads to a problem of dataset shift which degrades the model performance. In this paper, we first identify the dataset shift problem in the link prediction task and provide theoretical analyses on how existing link prediction methods are vulnerable to it. We then propose FakeEdge, a model-agnostic technique, to address the problem by mitigating the graph topological gap between training and testing sets. Extensive experiments demonstrate the applicability and superiority of FakeEdge on multiple datasets across various domains.
translated by 谷歌翻译
图形神经网络已成为从图形结构数据学习的不可缺少的工具之一,并且它们的实用性已在各种各样的任务中显示。近年来,建筑设计的巨大改进,导致各种预测任务的性能更好。通常,这些神经架构在同一层中使用可知的权重矩阵组合节点特征聚合和特征转换。这使得分析从各种跳过的节点特征和神经网络层的富有效力来挑战。由于不同的图形数据集显示在特征和类标签分布中的不同级别和异常级别,因此必须了解哪些特征对于没有任何先前信息的预测任务是重要的。在这项工作中,我们将节点特征聚合步骤和深度与图形神经网络分离,并经验分析了不同的聚合特征在预测性能中发挥作用。我们表明,并非通过聚合步骤生成的所有功能都很有用,并且通常使用这些较少的信息特征可能对GNN模型的性能有害。通过我们的实验,我们表明学习这些功能的某些子集可能会导致各种数据集的性能更好。我们建议使用Softmax作为常规器,并从不同跳距的邻居聚合的功能的“软选择器”;和L2 - GNN层的标准化。结合这些技术,我们呈现了一个简单浅的模型,特征选择图神经网络(FSGNN),并经验展示所提出的模型比九个基准数据集中的最先进的GNN模型实现了可比或甚至更高的准确性节点分类任务,具有显着的改进,可达51.1%。
translated by 谷歌翻译
Learning node embeddings that capture a node's position within the broader graph structure is crucial for many prediction tasks on graphs. However, existing Graph Neural Network (GNN) architectures have limited power in capturing the position/location of a given node with respect to all other nodes of the graph. Here we propose Position-aware Graph Neural Networks (P-GNNs), a new class of GNNs for computing position-aware node embeddings. P-GNN first samples sets of anchor nodes, computes the distance of a given target node to each anchor-set, and then learns a non-linear distance-weighted aggregation scheme over the anchor-sets. This way P-GNNs can capture positions/locations of nodes with respect to the anchor nodes. P-GNNs have several advantages: they are inductive, scalable, and can incorporate node feature information. We apply P-GNNs to multiple prediction tasks including link prediction and community detection. We show that P-GNNs consistently outperform state of the art GNNs, with up to 66% improvement in terms of the ROC AUC score.Node embedding methods can be categorized into Graph Neural Networks (GNNs) approaches (Scarselli et al., 2009),
translated by 谷歌翻译
在过去几年中,人们对代表性学习的图形神经网络(GNN)的兴趣不大。GNN提供了一个一般有效的框架,可以从图形结构化数据中学习。但是,GNN通常仅使用一个非常有限的邻域的信息来避免过度光滑。希望为模型提供更多信息。在这项工作中,我们将个性化Pagerank(PPR)的极限分布纳入图形注意力网络(GATS)中,以反映较大的邻居信息,而无需引入过度光滑。从直觉上讲,基于个性化Pagerank的消息聚合对应于无限的许多邻里聚合层。我们表明,对于四个广泛使用的基准数据集,我们的模型优于各种基线模型。我们的实施已在线公开。
translated by 谷歌翻译
数据增强已广泛用于图像数据和语言数据,但仍然探索图形神经网络(GNN)。现有方法专注于从全局视角增强图表数据,并大大属于两个类型:具有特征噪声注入的结构操纵和对抗训练。但是,最近的图表数据增强方法忽略了GNNS“消息传递机制的本地信息的重要性。在这项工作中,我们介绍了本地增强,这通过其子图结构增强了节点表示的局部。具体而言,我们将数据增强模拟为特征生成过程。鉴于节点的功能,我们的本地增强方法了解其邻居功能的条件分布,并生成更多邻居功能,以提高下游任务的性能。基于本地增强,我们进一步设计了一个新颖的框架:La-GNN,可以以即插即用的方式应用于任何GNN模型。广泛的实验和分析表明,局部增强一致地对各种基准的各种GNN架构始终如一地产生性能改进。
translated by 谷歌翻译
在本文中,我们旨在提供有效的成对学习神经链路预测(PLNLP)框架。该框架将链路预测视为对等级问题的成对学习,包括四个主要组件,即邻域编码器,链路预测器,负采样器和目标函数组成。该框架灵活地,任何通用图形神经卷积或链路预测特定神经结构都可以作为邻域编码器。对于链路预测器,我们设计不同的评分功能,可以基于不同类型的图表来选择。在否定采样器中,我们提供了几种采样策略,这些策略是特定的问题。至于目标函数,我们建议使用有效的排名损失,这大约最大化标准排名度量AUC。我们在4个链路属性预测数据集上评估了开放图基准的4个链接属性预测数据集,包括\ texttt {ogbl-ddi},\ texttt {ogbl-collbab},\ texttt {ogbl-ppa}和\ texttt {ogbl-ciation2}。 PLNLP在\ TextTt {ogbl-ddi}上实现前1个性能,以及仅使用基本神经架构的\ texttt {ogbl-collab}和\ texttt {ogbl-ciation2}的前2个性能。该性能展示了PLNLP的有效性。
translated by 谷歌翻译
链接预测是图形结构数据(例如,社交网络,药物副作用网络等)的基本问题。图形神经网络为此问题提供了强大的解决方案,特别是通过学习封闭目标链接的子图的表示(即节点对)。但是,这些解决方案不能很好地扩展到大图,因为封闭子图的提取和操作在计算上是昂贵的,尤其是对于大图。本文提出了一个可扩展的链接预测解决方案,我们称之为缩放,该解决方案利用稀疏的封闭子图来做出预测。为了提取稀疏的封闭子图,缩放缩放从目标对节点进行多次随机步行,然后在所有访问的节点引起的采样封闭子图上操作。通过利用较小的采样封闭子图,缩放的缩放可以缩放到较大的图形,而在保持高精度的同时,缩小开销要少得多。缩放进一步提供了控制计算开销与准确性之间的权衡的灵活性。通过全面的实验,我们已经证明,缩放可以产生与现有子图表示学习框架报告的同时所报道的,同时计算要求较少的准确性。
translated by 谷歌翻译
Recently, graph neural networks (GNNs) have revolutionized the field of graph representation learning through effectively learned node embeddings, and achieved state-of-the-art results in tasks such as node classification and link prediction. However, current GNN methods are inherently flat and do not learn hierarchical representations of graphs-a limitation that is especially problematic for the task of graph classification, where the goal is to predict the label associated with an entire graph. Here we propose DIFFPOOL, a differentiable graph pooling module that can generate hierarchical representations of graphs and can be combined with various graph neural network architectures in an end-to-end fashion. DIFFPOOL learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN, mapping nodes to a set of clusters, which then form the coarsened input for the next GNN layer. Our experimental results show that combining existing GNN methods with DIFFPOOL yields an average improvement of 5-10% accuracy on graph classification benchmarks, compared to all existing pooling approaches, achieving a new state-of-the-art on four out of five benchmark data sets.
translated by 谷歌翻译
Clustering is a fundamental problem in network analysis that finds closely connected groups of nodes and separates them from other nodes in the graph, while link prediction is to predict whether two nodes in a network are likely to have a link. The definition of both naturally determines that clustering must play a positive role in obtaining accurate link prediction tasks. Yet researchers have long ignored or used inappropriate ways to undermine this positive relationship. In this article, We construct a simple but efficient clustering-driven link prediction framework(ClusterLP), with the goal of directly exploiting the cluster structures to obtain connections between nodes as accurately as possible in both undirected graphs and directed graphs. Specifically, we propose that it is easier to establish links between nodes with similar representation vectors and cluster tendencies in undirected graphs, while nodes in a directed graphs can more easily point to nodes similar to their representation vectors and have greater influence in their own cluster. We customized the implementation of ClusterLP for undirected and directed graphs, respectively, and the experimental results using multiple real-world networks on the link prediction task showed that our models is highly competitive with existing baseline models. The code implementation of ClusterLP and baselines we use are available at https://github.com/ZINUX1998/ClusterLP.
translated by 谷歌翻译
图神经网络(GNN)在图形深学习域中受到了很多关注。但是,从经验和理论上,最近的研究表明,深度GNN遭受了过度拟合和过度平滑的问题。通常的解决方案不能解决深度GNN的大量运行时,或者在同一特征空间中限制了图形卷积。我们提出了自适应图扩散网络(AGDN),该网络在具有中等复杂性和运行时的不同特征空间中执行多层广义图扩散。标准图扩散方法将过渡矩阵的大且密集的功率与预定义的加权系数结合在一起。取而代之的是,AGDN将较小的多跳节点表示与可学习的加权系数结合在一起。我们提出了两种可扩展的加权系数机制,以捕获多跳信息:趋于关注(HA)和霍普·沃斯卷积(HC)。我们评估了具有半监督节点分类和链接预测任务的多样性,挑战开放图基准(OGB)数据集的AGDN。直到提交日期(2022年8月26日),AGDNS在OGBN-ARXIV,OGBN-蛋白质和OGBL-DDI数据集中实现了TOP-1性能,并且在OGBL-Citater2数据集中获得了TOP-3性能。在类似的Tesla V100 GPU卡上,AGDNS优于可逆的GNNS(REVGNNS),其复杂性为13%,REVGNN在OGBN-Proteins数据集上的培训时间为1%。 AGDN还可以通过36%的训练来实现与密封的可比性能,而OGBL-Citation2数据集的密封量为0.2%的推理运行时。
translated by 谷歌翻译
在本文中,我们提出了一种用于链接预测任务的路径感知暹罗图神经网络(PSG)的算法。首先,PSG可以捕获给定两个节点的节点和边缘特征,即k-邻晶的结构信息和节点的继电器路径信息。此外,PSG利用暹罗图神经网络来表示两个对比链接,这是一个积极的联系和负面的联系。我们在OGBL-DDI的Open Graph Benchmark(OGB)的链接属性预测数据集上评估了所提出的算法PSG。PSG在OGBL-DDI上取得了前1位的表现。实验结果验证了PSG的优势。
translated by 谷歌翻译