Schr \“Odinger方程的准确数字解决方案在量子化学方面至关重要。然而,当前高精度方法的计算成本与交互粒子的数量相当差。最近将Monte Carlo方法与无监督的神经网络训练相结合被提议作为克服该环境中的维度诅咒的有希望的方法,并以适度缩放的计算成本获得各个分子的准确的波力。这些方法目前不会利用波力源相对于它们的分子几何形状表现出的规律性。灵感来自最近的近期转移学习在机器翻译和计算机视觉任务中的成功应用,我们试图通过在优化基于神经网络的模型以进行不同分子几何形状时引入权重共享限制来利用这种规律。也就是说,我们限制了优化过程高达95%的w神经网络模型中的八个实际上是相同的分类几何形状。我们发现,当通过数量级考虑相同分子的核几何形状时,该技术可以加速优化,并且它开启了朝向预训练的神经网络波力发射的有希望的路线,即使在不同的分子上也能产生高精度。
translated by 谷歌翻译
神经网络和量子蒙特卡罗方法的组合作为前进的高精度电子结构计算的道路出现。以前的建议具有组合具有反对称层的增强的神经网络层,以满足电子波技的反对称要求。但是,迄今为止,如果可以代表物理兴趣的反对称功能,则不清楚尚不清楚,并且难以测量反对称层的富有效果。这项工作通过将明确的防视通用神经网络层作为诊断工具引入明确的防视通用神经网络层来解决这个问题。我们首先介绍一种通用的反对二手(GA)层,我们用于更换称为FEMINET的高精度ANSATZ的整个防反对二层层。我们证明所得到的FERMINET-GA架构可以有效地产生小型系统的确切地位能量。然后,我们考虑一种分解的反对称(FA)层,其通过替换具有反对称神经网络的产品的决定因素的产品更易于推广FERMINET。有趣的是,由此产生的FERMINET-FA架构并不优于FERMINET。这表明抗体产品的总和是Ferminet架构的关键限制方面。为了进一步探索这一点,我们研究了称为全决定性模式的FERMINET的微小修改,其用单一组合的决定蛋白取代了决定因素的每个产物。完整的单决定性Ferminet封闭标准单决定性Ferminet和Ferminet-Ga之间的大部分间隙。令人惊讶的是,在4.0 BoHR的解离键长度的氮素分子上,全单决定性Ferminet可以显着优于标准的64个决定性Ferminet,从而在0.4千卡/摩尔中获得最佳可用计算基准的能量。
translated by 谷歌翻译
机器学习,特别是深度学习方法在许多模式识别和数据处理问题,游戏玩法中都优于人类的能力,现在在科学发现中也起着越来越重要的作用。机器学习在分子科学中的关键应用是通过使用密度函数理论,耦合群或其他量子化学方法获得的电子schr \“ odinger方程的Ab-Initio溶液中的势能表面或力场。我们回顾了一种最新和互补的方法:使用机器学习来辅助从第一原理中直接解决量子化学问题。具体来说,我们专注于使用神经网络ANSATZ功能的量子蒙特卡洛(QMC)方法,以解决电子SCHR \ “ Odinger方程在第一和第二量化中,计算场和激发态,并概括多个核构型。与现有的量子化学方法相比,这些新的深QMC方法具有以相对适度的计算成本生成高度准确的Schr \“ Odinger方程的溶液。
translated by 谷歌翻译
在多种重要应用中,获得电子系统的准确地面和低洼激发态至关重要。一种用于求解对大型系统缩放的Schr \“ Odinger方程的方法是变异量蒙特卡洛(QMC)。最近引入的深层QMC方法使用以深神经网络代表的Ansatzes,并生成几乎精确的分子解决方案的分子解决方案最多包含几十个电子,并有可能扩展到更大的系统,而其他高度准确的方法不可行。在本文中,我们扩展了一个这样的Ansatz(Paulinet)来计算电子激发态。我们在各种方法上演示了我们的方法小原子和分子,并始终达到低洼状态的高精度。为了突出该方法的潜力,我们计算了较大的苯分子的第一个激发态,以及乙烯的圆锥形交集,Paulinet匹配的结果更昂贵高级方法。
translated by 谷歌翻译
解决SCHR \“Odinger方程是许多量子力学性能的关键。然而,分析解决方案仅用于单电子系统的易行。最近,神经网络在许多电子系统的建模波函数中成功。与变分蒙特 - Carlo(VMC)框架,这导致了与最着名的经典方法相提并论的解决方案。仍然,这些神经方法需要大量的计算资源,因为一个人必须为每个分子几何训练单独的模型。在这项工作中,我们结合了一个图形神经网络(GNN)具有神经波功能,同时通过VMC解决多个几何的SCHR \“Odinger方程。这使我们能够通过单个训练通过模拟潜在能量表面的连续子集。与现有的最先进的网络相比,我们的潜在能量表面网络PESNet在匹配或超越其准确性的同时将多个几何形状的训练速度加速至多40次。这可以打开准确和数量级的路径便宜的量子力学计算。
translated by 谷歌翻译
量子状态的神经网络表示的变异优化已成功地用于解决相互作用的费米子问题。尽管发展迅速,但在考虑大规模分子时会出现重大的可伸缩性挑战,这些分子与非局部相互作用的量子自旋汉密尔顿人相对应,这些量子旋转汉密尔顿人由数千甚至数百万的保利操作员组成。在这项工作中,我们引入了可扩展的并行化策略,以改善基于神经网络的量子量蒙特卡洛计算,用于AB-Initio量子化学应用。我们建立了由GPU支持的局部能量并行性,以计算潜在复杂分子的哈密顿量的优化目标。使用自回旋抽样技术,我们证明了实现CCSD基线目标能量所需的壁锁定时间的系统改进。通过将最终的旋转汉顿量的结构适应自回归抽样顺序,进一步提高了性能。与经典的近似方法相比,该算法实现了有希望的性能,并且比现有基于神经网络的方法具有运行时间和可伸缩性优势。
translated by 谷歌翻译
分子照片开关是光激活药物的基础。关键的照片开关是偶氮苯,它表现出对光线的反式cis异构主义。顺式异构体的热半衰期至关重要,因为它控制着光诱导的生物学效应的持续时间。在这里,我们介绍了一种计算工具,用于预测偶氮苯衍生物的热半衰期。我们的自动化方法使用了经过量子化学数据训练的快速准确的机器学习潜力。在建立在良好的早期证据的基础上,我们认为热异构化是通过Intersystem Crossing介导的旋转来进行的,并将这种机制纳入我们的自动化工作流程。我们使用我们的方法来预测19,000种偶氮苯衍生物的热半衰期。我们探索障碍和吸收波长之间的趋势和权衡,并开源我们的数据和软件以加速光精神病学研究。
translated by 谷歌翻译
深度神经网络非常成功,因为高度准确的波函数ANS \“ ATZE用于分子基础状态的变异蒙特卡洛计算。我们提出了一个这样的Ansatz,Ferminet的扩展,以计算定期汉密尔顿人的基础状态,并研究均质电子气。小电子气体系统基态能量的费米特计算与先前的启动器完全构型相互作用量子蒙特卡洛和扩散蒙特卡洛计算非常吻合。我们研究了自旋偏振均质的均质电子气体,并证明了这一点相同神经网络架构能够准确地代表离域的费米液态和局部的晶体状态。没有给出网络,没有\ emph {a emph {a a a emph {a a emph {a e emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {并自发打破对称性以产生结晶蛋白E基态在低密度下。
translated by 谷歌翻译
我们为致密氢的方程式提供了基于深层生成模型的变化自由能方法。我们采用归一化流网络来对质子玻尔兹曼分布和费米子神经网络进行建模,以在给定的质子位置对电子波函数进行建模。通过共同优化两个神经网络,我们达到了与先前的电子蒙特卡洛计算相当的变异自由能。我们的结果表明,与先前的蒙特卡洛和从头算分子动力学数据相比,行星条件下的氢甚至更浓密,这远离经验化学模型的预测。获得可靠的密集氢状态方程,尤其是直接进入熵和自由能,为行星建模和高压物理学研究开辟了新的机会。
translated by 谷歌翻译
我们介绍了Netket的版本3,机器学习工具箱适用于许多身体量子物理学。Netket围绕神经网络量子状态构建,并为其评估和优化提供有效的算法。这个新版本是基于JAX的顶部,一个用于Python编程语言的可差分编程和加速的线性代数框架。最重要的新功能是使用机器学习框架的简明符号来定义纯Python代码中的任意神经网络ANS \“凝固的可能性,这允许立即编译以及渐变的隐式生成自动化。Netket 3还带来了GPU和TPU加速器的支持,对离散对称组的高级支持,块以缩放多程度的自由度,Quantum动态应用程序的驱动程序,以及改进的模块化,允许用户仅使用部分工具箱是他们自己代码的基础。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
我们训练神经形态硬件芯片以通过变分能最小化近似Quantum旋转模型的地面状态。与使用马尔可夫链蒙特卡罗进行样品生成的变分人工神经网络相比,这种方法具有优点:神经形态器件以快速和固有的并行方式产生样品。我们开发培训算法,并将其应用于横向场介绍模型,在中等系统尺寸下显示出良好的性能($ n \ LEQ 10 $)。系统的普遍开心研究表明,较大系统尺寸的可扩展性主要取决于样品质量,该样品质量受到模拟神经芯片上的参数漂移的限制。学习性能显示阈值行为作为ansatz的变分参数的数量的函数,大约为50美元的隐藏神经元,足以表示关键地位,最高$ n = 10 $。网络参数的6 + 1位分辨率不会限制当前设置中的可达近似质量。我们的工作为利用神经形态硬件的能力提供了一种重要的一步,以解决量子数量问题中的维数诅咒。
translated by 谷歌翻译
罕见事件计算研究中的一个中心对象是委员会函数。尽管计算成本高昂,但委员会功能编码涉及罕见事件的过程的完整机械信息,包括反应率和过渡状态合奏。在过渡路径理论(TPT)的框架下,最近的工作[1]提出了一种算法,其中反馈回路融合了一个神经网络,该神经网络将委员会功能建模为重要性采样,主要是伞形采样,该摘要收集了自适应训练所需的数据。在这项工作中,我们显示需要进行其他修改以提高算法的准确性。第一个修改增加了监督学习的要素,这使神经网络通过拟合从短分子动力学轨迹获得的委员会值的样本均值估计来改善其预测。第二个修改用有限的温度字符串(FTS)方法代替了基于委员会的伞采样,该方法可以在过渡途径的区域中进行均匀抽样。我们测试了具有非凸电势能的低维系统的修改,可以通过分析或有限元方法找到参考解决方案,并显示如何将监督学习和FTS方法组合在一起,从而准确地计算了委员会功能和反应速率。我们还为使用FTS方法的算法提供了错误分析,使用少数样品在训练过程中可以准确估算反应速率。然后将这些方法应用于未知参考溶液的分子系统,其中仍然可以获得委员会功能和反应速率的准确计算。
translated by 谷歌翻译
Developing machine learning-based interatomic potentials from ab-initio electronic structure methods remains a challenging task for computational chemistry and materials science. This work studies the capability of transfer learning for efficiently generating chemically accurate interatomic neural network potentials on organic molecules from the MD17 and ANI data sets. We show that pre-training the network parameters on data obtained from density functional calculations considerably improves the sample efficiency of models trained on more accurate ab-initio data. Additionally, we show that fine-tuning with energy labels alone suffices to obtain accurate atomic forces and run large-scale atomistic simulations. We also investigate possible limitations of transfer learning, especially regarding the design and size of the pre-training and fine-tuning data sets. Finally, we provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.
translated by 谷歌翻译
我们开发了一种组合量子蒙特卡罗的准确性在描述与机器学习电位(MLP)的效率描述电子相关性的技术。我们使用内核线性回归与肥皂(平滑的重叠原子位置)方法结合使用,以非常有效的方式在此实现。关键成分是:i)一种基于最远点采样的稀疏技术,确保我们的MLP的一般性和可转换性和II)所谓的$ \ Delta $ -Learning,允许小型训练数据集,这是一种高度准确的基本属性但是计算地要求计算,例如基于量子蒙特卡罗的计算。作为第一个应用,我们通过强调这一非常高精度的重要性,展示了高压氢气液体过渡的基准研究,并显示了我们的MLP的高精度的重要性,实验室在实验中难以进行实验,以及实验理论仍然远非结论。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
标准化流是可易处理的密度模型,可以近似复杂的目标分布,例如物理系统的玻尔兹曼分布。但是,当前的训练流量要么具有寻求模式的行为,要么使用昂贵的MCMC模拟事先生成的目标样本,要么使用具有很高差异的随机损失。为了避免这些问题,我们以退火重要性采样(AIS)增强流量,并最大程度地减少覆盖$ \ alpha $ -divergence的质量,并使用$ \ alpha = 2 $,从而最大程度地减少了重要性的重量差异。我们的方法是流动性Bootstrap(Fab),使用AIS在流动较差的目标区域中生成样品,从而促进了新模式的发现。我们以AIS的最小差异分布来定位,以通过重要性抽样来估计$ \ alpha $ -Divergence。我们还使用优先的缓冲区来存储和重复使用AIS样本。这两个功能显着提高了Fab的性能。我们将FAB应用于复杂的多模式目标,并表明我们可以在以前的方法失败的情况下非常准确地近似它们。据我们所知,我们是第一个仅使用非均衡目标密度学习丙氨酸二肽分子的玻璃体分布,而无需通过分子动力学(MD)模拟生成的样品:FAB与通过最大可能性训练更好的效果,而不是通过最大可能性产生的结果。在MD样品上使用100倍的目标评估。在重新获得重要权重的样品后,我们获得了与地面真相几乎相同的二面角的无偏直方图。
translated by 谷歌翻译
机器学习(ML)模型与它们在分子动力学研究中的有用性相反,作为反应屏障搜索的替代潜力,成功的成功有限。这是由于化学空间相关过渡状态区域中训练数据的稀缺性。当前,用于培训小分子系统上的ML模型的可用数据集几乎仅包含在平衡处或附近的配置。在这项工作中,我们介绍了包含960万密度函数理论(DFT)的数据集过渡1X的计算,对WB97X/6-31G(D)理论水平的反应途径上和周围的分子构型的力和能量计算。数据是通过在10K反应上以DFT运行轻度弹性带(NEB)计算而生成的,同时保存中间计算。我们在Transition1x上训练最先进的等效图形消息通讯神经网络模型,并在流行的ANI1X和QM9数据集上进行交叉验证。我们表明,ML模型不能仅通过迄今为止流行的基准数据集进行过渡状态区域的特征。 Transition1x是一种新的具有挑战性的基准,它将为开发下一代ML力场提供一个重要的步骤,该电场也远离平衡配置和反应性系统。
translated by 谷歌翻译
粗粒(CG)分子模拟已成为研究全原子模拟无法访问的时间和长度尺度上分子过程的标准工具。参数化CG力场以匹配全原子模拟,主要依赖于力匹配或相对熵最小化,这些熵最小化分别需要来自具有全原子或CG分辨率的昂贵模拟中的许多样本。在这里,我们提出了流量匹配,这是一种针对CG力场的新训练方法,它通过利用正常流量(一种生成的深度学习方法)来结合两种方法的优势。流量匹配首先训练标准化流程以表示CG概率密度,这等同于最小化相对熵而无需迭代CG模拟。随后,该流量根据学习分布生成样品和力,以通过力匹配来训练所需的CG能量模型。即使不需要全部原子模拟的力,流程匹配就数据效率的数量级优于经典力匹配,并产生CG模型,可以捕获小蛋白质的折叠和展开过渡。
translated by 谷歌翻译