分子照片开关是光激活药物的基础。关键的照片开关是偶氮苯,它表现出对光线的反式cis异构主义。顺式异构体的热半衰期至关重要,因为它控制着光诱导的生物学效应的持续时间。在这里,我们介绍了一种计算工具,用于预测偶氮苯衍生物的热半衰期。我们的自动化方法使用了经过量子化学数据训练的快速准确的机器学习潜力。在建立在良好的早期证据的基础上,我们认为热异构化是通过Intersystem Crossing介导的旋转来进行的,并将这种机制纳入我们的自动化工作流程。我们使用我们的方法来预测19,000种偶氮苯衍生物的热半衰期。我们探索障碍和吸收波长之间的趋势和权衡,并开源我们的数据和软件以加速光精神病学研究。
translated by 谷歌翻译
计算催化和机器学习社区在开发用于催化剂发现和设计的机器学习模型方面取得了长足的进步。然而,跨越催化的化学空间的一般机器学习潜力仍然无法触及。一个重大障碍是在广泛的材料中获得访问培训数据的访问。缺乏数据的一类重要材料是氧化物,它抑制模型无法更广泛地研究氧气进化反应和氧化物电催化。为了解决这个问题,我们开发了开放的催化剂2022(OC22)数据集,包括62,521个密度功能理论(DFT)放松(〜9,884,504个单点计算),遍及一系列氧化物材料,覆盖范围,覆盖率和吸附物( *H, *o, *o, *o, *o, *o, * n, *c, *ooh, *oh, *oh2, *o2, *co)。我们定义广义任务,以预测催化过程中适用的总系统能量,发展几个图神经网络的基线性能(Schnet,Dimenet ++,Forcenet,Spinconv,Painn,Painn,Gemnet-DT,Gemnet-DT,Gemnet-OC),并提供预先定义的数据集分割以建立明确的基准,以实现未来的努力。对于所有任务,我们研究组合数据集是否会带来更好的结果,即使它们包含不同的材料或吸附物。具体而言,我们在Open Catalyst 2020(OC20)数据集和OC22上共同训练模型,或OC22上的微调OC20型号。在最一般的任务中,Gemnet-OC看到通过微调来提高了约32%的能量预测,通过联合训练的力预测提高了约9%。令人惊讶的是,OC20和较小的OC22数据集的联合培训也将OC20的总能量预测提高了约19%。数据集和基线模型是开源的,公众排行榜将遵循,以鼓励社区的持续发展,以了解总能源任务和数据。
translated by 谷歌翻译
使用精确能量功能的原子模拟可以为气体和冷凝相中的分子的功能运动提供分子水平洞察。与最近开发的和目前在整合和结合的努力与机器学习技术相结合,提供了一个独特的机会,使这种动态模拟更接近现实。这种观点界定了现场其他人的努力和您自己的工作的现状,并讨论了开放问题和未来的前景。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
Developing machine learning-based interatomic potentials from ab-initio electronic structure methods remains a challenging task for computational chemistry and materials science. This work studies the capability of transfer learning for efficiently generating chemically accurate interatomic neural network potentials on organic molecules from the MD17 and ANI data sets. We show that pre-training the network parameters on data obtained from density functional calculations considerably improves the sample efficiency of models trained on more accurate ab-initio data. Additionally, we show that fine-tuning with energy labels alone suffices to obtain accurate atomic forces and run large-scale atomistic simulations. We also investigate possible limitations of transfer learning, especially regarding the design and size of the pre-training and fine-tuning data sets. Finally, we provide GM-NN potentials pre-trained and fine-tuned on the ANI-1x and ANI-1ccx data sets, which can easily be fine-tuned on and applied to organic molecules.
translated by 谷歌翻译
适当地识别和处理具有显着多参考(MR)特征的分子和材料对于在虚拟高通量筛选(VHT)中实现高数据保真度至关重要。然而,使用单一功能的近似密度泛函理论(DFT)进行大多数VHT。尽管发展了许多MR诊断,但这种诊断的单一价值的程度表明了对化学性质预测的MR效应不是很好的。我们评估超过10,000个过渡金属配合物(TMC)的MR诊断方法,并与有机分子中的那些进行比较。我们透露,只有一些MR诊断程序可在这些材料空间上转移。通过研究MR特征对涉及多个潜在能量表面的化学性质(即,MR效应)的影响(即绝热自旋分裂,$ \ DELTA E_ \ MATHRM {HL} $和电离潜力,IP),我们观察到这一点先生效应的取消超过积累。 MR特征的差异比预测物业预测中MR效应的先生特征的总程度更重要。通过这种观察,我们建立转移学习模型,直接预测CCSD(T)-Level绝热$ \ Delta e_ \ Mathrm {H-L} $和IP从较低的理论。通过将这些模型与不确定量化和多级建模相结合,我们引入了一种多管策略,可将数据采集加速至少三个,同时实现鲁棒VHT的化学精度(即1 kcal / mol)。
translated by 谷歌翻译
机器学习(ML)模型与它们在分子动力学研究中的有用性相反,作为反应屏障搜索的替代潜力,成功的成功有限。这是由于化学空间相关过渡状态区域中训练数据的稀缺性。当前,用于培训小分子系统上的ML模型的可用数据集几乎仅包含在平衡处或附近的配置。在这项工作中,我们介绍了包含960万密度函数理论(DFT)的数据集过渡1X的计算,对WB97X/6-31G(D)理论水平的反应途径上和周围的分子构型的力和能量计算。数据是通过在10K反应上以DFT运行轻度弹性带(NEB)计算而生成的,同时保存中间计算。我们在Transition1x上训练最先进的等效图形消息通讯神经网络模型,并在流行的ANI1X和QM9数据集上进行交叉验证。我们表明,ML模型不能仅通过迄今为止流行的基准数据集进行过渡状态区域的特征。 Transition1x是一种新的具有挑战性的基准,它将为开发下一代ML力场提供一个重要的步骤,该电场也远离平衡配置和反应性系统。
translated by 谷歌翻译
氢化镁(MGH $ _2 $)已被广泛研究有效储氢。然而,其散装解吸温度(553 k)被认为是实际应用的太高。除了掺杂外,可以降低这种用于释放氢的这种反应能量的策略是使用MGH $ _2 $基本的纳米颗粒(NPS)。在这里,我们首先调查Mg $ _N $ H $ _ {2n} $ NPS($ N <10 $)的热力学特性,特别是通过评估对焓,熵和热膨胀的anharmonic影响随机自我一致的谐波近似(SSCHA)。后一种方法超出了先前的方法,通常基于分子力学和准谐波近似,允许AB初始自由能量计算。我们发现了几乎线性依赖于间隙键长度的温度 - 具有超过300k的相对变化,与Mg-H键的键距离降低。为了将NPS的大小增加到MGH $ _2 $的氢解吸的实验中,我们设计了培训的计算有效的机器学习模型,以准确地确定力量和总能量(即潜在能量表面),与SSCHA模型集成了后者完全包括anharmonic效应。我们发现亚纳米簇Mg $ _n $ h $ _ {2n} $以$ n \ leq 10 $的显着减少,但不可忽视,虽然因anharmonicities(最多) 10%)。
translated by 谷歌翻译
光活性虹膜复合物的应用广泛,因为它们的应用从照明到光催化。但是,从精确度和计算成本的角度来看,这些复合物的激发状态性能预测挑战了从头开始方法,例如时间依赖性密度功能理论(TDDFT),使高吞吐量虚拟筛选(HTVS)复杂化。相反,我们利用低成本的机器学习(ML)模型来预测光活性虹膜复合物的激发状态特性。我们使用1,380个虹膜复合物的实验数据来训练和评估ML模型,并确定最佳和最可转移的模型,是从低成本密度功能理论紧密结合计算的电子结构特征训练的模型。使用这些模型,我们预测所考虑的三个激发态性能,即磷光的平均发射能,激发态寿命和发射光谱积分,具有具有或取代TDDFT的精度。我们进行特征重要性分析,以确定哪些虹膜复杂属性控制激发状态的特性,并通过明确的例子来验证这些趋势。为了证明如何将ML模型用于HTV和化学发现的加速度,我们策划了一组新型的假设虹膜络合物,并确定了新磷剂设计的有希望的配体。
translated by 谷歌翻译
可拍照的分子显示了可以使用光访问的两个或多个异构体形式。将这些异构体的电子吸收带分开是选择性解决特定异构体并达到高光稳态状态的关键,同时总体红色转移带来的吸收带可以限制因紫外线暴露而限制材料损害,并增加了光疗法应用中的渗透深度。但是,通过合成设计将这些属性工程为系统仍然是一个挑战。在这里,我们提出了一条数据驱动的发现管道,用于由数据集策划和使用高斯过程的多任务学习支撑的分子照片开关。在对电子过渡波长的预测中,我们证明了使用来自四个Photoswitch转变波长的标签训练的多输出高斯过程(MOGP)产生相对于单任务模型的最强预测性能,并且在操作上超过了时间依赖时间依赖性的密度理论(TD) -dft)就预测的墙壁锁定时间而言。我们通过筛选可商购的可拍摄分子库来实验验证我们提出的方法。通过此屏幕,我们确定了几个图案,这些基序显示了它们的异构体的分离电子吸收带,表现出红移的吸收,并且适用于信息传输和光电学应用。我们的策划数据集,代码以及所有型号均可在https://github.com/ryan-rhys/the-photoswitch-dataset上提供
translated by 谷歌翻译
我们开发了一种组合量子蒙特卡罗的准确性在描述与机器学习电位(MLP)的效率描述电子相关性的技术。我们使用内核线性回归与肥皂(平滑的重叠原子位置)方法结合使用,以非常有效的方式在此实现。关键成分是:i)一种基于最远点采样的稀疏技术,确保我们的MLP的一般性和可转换性和II)所谓的$ \ Delta $ -Learning,允许小型训练数据集,这是一种高度准确的基本属性但是计算地要求计算,例如基于量子蒙特卡罗的计算。作为第一个应用,我们通过强调这一非常高精度的重要性,展示了高压氢气液体过渡的基准研究,并显示了我们的MLP的高精度的重要性,实验室在实验中难以进行实验,以及实验理论仍然远非结论。
translated by 谷歌翻译
由于控制结构特性关系的分子间相互作用的微妙平衡,预测由分子构建块形成的晶体结构的稳定性是一个高度非平凡的科学问题。一种特别活跃和富有成果的方法涉及对相互作用的化学部分的不同组合进行分类,因为了解不同相互作用的相对能量可以使分子晶体的设计和微调其稳定性。尽管这通常是基于对已知晶体结构中最常见的基序的经验观察进行的,但我们建议采用有监督和无监督的机器学习技术的组合来自动化分子构建块的广泛库。我们介绍了一个针对有机晶体的结合能量预测的结构描述符,并利用以原子为中心的性质来获得对不同化学基团对晶体晶格能量的贡献的数据驱动评估。然后,我们使用结构 - 能量景观的低维表示来解释该库,并讨论可以从本分析中提取的见解的选定示例,从而提供了一个完整的数据库来指导分子材料的设计。
translated by 谷歌翻译
机器学习(ML)模型与它们在分子动力学研究中的有用性相反,作为反应屏障搜索的替代潜力,成功的成功有限。这是由于化学空间相关过渡状态区域中训练数据的稀缺性。当前,用于培训小分子系统上的ML模型的可用数据集几乎仅包含在平衡处或附近的配置。在这项工作中,我们介绍了包含960万密度函数理论(DFT)的数据集过渡1X的计算,对WB97X/6-31G(D)理论水平的反应途径上和周围的分子构型的力和能量计算。数据是通过在10K反应上以DFT运行轻度弹性带(NEB)计算而生成的,同时保存中间计算。我们在Transition1x上训练最先进的等效图形消息通讯神经网络模型,并在流行的ANI1X和QM9数据集上进行交叉验证。我们表明,ML模型不能仅通过迄今为止流行的基准数据集进行过渡状态区域的特征。 Transition1x是一种新的具有挑战性的基准,它将为开发下一代ML力场提供一个重要的步骤,该电场也远离平衡配置和反应性系统。
translated by 谷歌翻译
Schr \“Odinger方程的准确数字解决方案在量子化学方面至关重要。然而,当前高精度方法的计算成本与交互粒子的数量相当差。最近将Monte Carlo方法与无监督的神经网络训练相结合被提议作为克服该环境中的维度诅咒的有希望的方法,并以适度缩放的计算成本获得各个分子的准确的波力。这些方法目前不会利用波力源相对于它们的分子几何形状表现出的规律性。灵感来自最近的近期转移学习在机器翻译和计算机视觉任务中的成功应用,我们试图通过在优化基于神经网络的模型以进行不同分子几何形状时引入权重共享限制来利用这种规律。也就是说,我们限制了优化过程高达95%的w神经网络模型中的八个实际上是相同的分类几何形状。我们发现,当通过数量级考虑相同分子的核几何形状时,该技术可以加速优化,并且它开启了朝向预训练的神经网络波力发射的有希望的路线,即使在不同的分子上也能产生高精度。
translated by 谷歌翻译
机器学习(ML)加速化学发现的两个突出挑战是候选分子或材料的合成性以及ML模型训练中使用的数据的保真度。为了应对第一个挑战,我们构建了一个假设的设计空间,为3250万转型金属复合物(TMC),其中所有组成片段(即金属和配体)和配体对称性都可以合成。为了应对第二项挑战,我们在雅各布梯子的多个梯级之间的23个密度功能近似之间搜索预测的共识。为了加快这3250万TMC的筛选,我们使用有效的全局优化来样本候选低自旋发色团,同时具有低吸收能和低静态相关性。尽管在这个大化的化学空间中的潜在发色团缺乏(即$ <$ 0.01 \%),但随着ML模型在积极学习过程中的改善,我们确定了高可能性(即$> $ 10 \%)的过渡金属发色团(即$> $ 10 \%)。这代表发现的1,000倍加速度,与几天而不是几年中的发现相对应。对候选发色团的分析揭示了对CO(III)和具有更大键饱和度的大型强野配体的偏爱。我们根据时间依赖性密度功能理论计算计算帕累托前沿上有希望的发色团的吸收光谱,并验证其中三分之二是否需要激发态特性。尽管这些复合物从未经过实验探索,但它们的组成配体在文献中表现出有趣的光学特性,体现了我们构建现实的TMC设计空间和主动学习方法的有效性。
translated by 谷歌翻译
粗粒(CG)分子模拟已成为研究全原子模拟无法访问的时间和长度尺度上分子过程的标准工具。参数化CG力场以匹配全原子模拟,主要依赖于力匹配或相对熵最小化,这些熵最小化分别需要来自具有全原子或CG分辨率的昂贵模拟中的许多样本。在这里,我们提出了流量匹配,这是一种针对CG力场的新训练方法,它通过利用正常流量(一种生成的深度学习方法)来结合两种方法的优势。流量匹配首先训练标准化流程以表示CG概率密度,这等同于最小化相对熵而无需迭代CG模拟。随后,该流量根据学习分布生成样品和力,以通过力匹配来训练所需的CG能量模型。即使不需要全部原子模拟的力,流程匹配就数据效率的数量级优于经典力匹配,并产生CG模型,可以捕获小蛋白质的折叠和展开过渡。
translated by 谷歌翻译
Data-driven interatomic potentials have emerged as a powerful class of surrogate models for {\it ab initio} potential energy surfaces that are able to reliably predict macroscopic properties with experimental accuracy. In generating accurate and transferable potentials the most time-consuming and arguably most important task is generating the training set, which still requires significant expert user input. To accelerate this process, this work presents \text{\it hyperactive learning} (HAL), a framework for formulating an accelerated sampling algorithm specifically for the task of training database generation. The key idea is to start from a physically motivated sampler (e.g., molecular dynamics) and add a biasing term that drives the system towards high uncertainty and thus to unseen training configurations. Building on this framework, general protocols for building training databases for alloys and polymers leveraging the HAL framework will be presented. For alloys, ACE potentials for AlSi10 are created by fitting to a minimal HAL-generated database containing 88 configurations (32 atoms each) with fast evaluation times of <100 microsecond/atom/cpu-core. These potentials are demonstrated to predict the melting temperature with excellent accuracy. For polymers, a HAL database is built using ACE, able to determine the density of a long polyethylene glycol (PEG) polymer formed of 200 monomer units with experimental accuracy by only fitting to small isolated PEG polymers with sizes ranging from 2 to 32.
translated by 谷歌翻译
在计算化学和材料科学中,创建快速准确的力场是一项长期挑战。最近,已经证明,几个直径传递神经网络(MPNN)超过了使用其他方法在准确性方面构建的模型。但是,大多数MPNN的计算成本高和可伸缩性差。我们建议出现这些局限性,因为MPNN仅传递两体消息,从而导致层数与网络的表达性之间的直接关系。在这项工作中,我们介绍了MACE,这是一种使用更高的车身订单消息的新型MPNN模型。特别是,我们表明,使用四体消息将所需的消息传递迭代数减少到\ emph {两},从而导致快速且高度可行的模型,达到或超过RMD17的最新准确性,3BPA和ACAC基准任务。我们还证明,使用高阶消息会导致学习曲线的陡峭程度改善。
translated by 谷歌翻译
定量探索了量子化学参考数据的训练神经网络(NNS)预测的不确定性量化的价值。为此,适当地修改了Physnet NN的体系结构,并使用不同的指标评估所得模型,以量化校准,预测质量以及预测误差和预测的不确定性是否可以相关。 QM9数据库培训的结果以及分布内外的测试集的数据表明,错误和不确定性与线性无关。结果阐明了噪声和冗余使分子的性质预测复杂化,即使在发生变化的情况下,例如在两个原本相同的分子中的双键迁移 - 很小。然后将模型应用于互变异反应的真实数据库。分析特征空间中的成员之间的距离与其他参数结合在一起表明,训练数据集中的冗余信息会导致较大的差异和小错误,而存在相似但非特定的信息的存在会返回大错误,但差异很小。例如,这是对含硝基的脂肪族链的观察到的,尽管训练集包含了与芳香族分子结合的硝基组的几个示例,但这些预测很困难。这强调了训练数据组成的重要性,并提供了化学洞察力,以了解这如何影响ML模型的预测能力。最后,提出的方法可用于通过主动学习优化基于信息的化学数据库改进目标应用程序。
translated by 谷歌翻译
在多种重要应用中,获得电子系统的准确地面和低洼激发态至关重要。一种用于求解对大型系统缩放的Schr \“ Odinger方程的方法是变异量蒙特卡洛(QMC)。最近引入的深层QMC方法使用以深神经网络代表的Ansatzes,并生成几乎精确的分子解决方案的分子解决方案最多包含几十个电子,并有可能扩展到更大的系统,而其他高度准确的方法不可行。在本文中,我们扩展了一个这样的Ansatz(Paulinet)来计算电子激发态。我们在各种方法上演示了我们的方法小原子和分子,并始终达到低洼状态的高精度。为了突出该方法的潜力,我们计算了较大的苯分子的第一个激发态,以及乙烯的圆锥形交集,Paulinet匹配的结果更昂贵高级方法。
translated by 谷歌翻译