粗粒(CG)分子模拟已成为研究全原子模拟无法访问的时间和长度尺度上分子过程的标准工具。参数化CG力场以匹配全原子模拟,主要依赖于力匹配或相对熵最小化,这些熵最小化分别需要来自具有全原子或CG分辨率的昂贵模拟中的许多样本。在这里,我们提出了流量匹配,这是一种针对CG力场的新训练方法,它通过利用正常流量(一种生成的深度学习方法)来结合两种方法的优势。流量匹配首先训练标准化流程以表示CG概率密度,这等同于最小化相对熵而无需迭代CG模拟。随后,该流量根据学习分布生成样品和力,以通过力匹配来训练所需的CG能量模型。即使不需要全部原子模拟的力,流程匹配就数据效率的数量级优于经典力匹配,并产生CG模型,可以捕获小蛋白质的折叠和展开过渡。
translated by 谷歌翻译
归一化流量是用于在物理系统中建模概率分布的有希望的工具。虽然最先进的流动精确地近似分布和能量,但物理中的应用还需要平滑能量来计算力量和高阶导数。此外,这种密度通常在非琐碎拓扑上定义。最近的一个例子是用于产生肽和小蛋白质的3D结构的Boltzmann发电机。这些生成模型利用内部坐标(Dihedrals,角度和粘合)的空间,这是过度矫戈尔和紧凑的间隔的产物。在这项工作中,我们介绍了一类在紧凑型间隔和高血症上工作的平滑混合转换。混合物转化采用根除方法在实践中反转它们,这已经防止了双向流动训练。为此,我们示出了通过逆函数定理从前向评估计算这种反转的参数梯度和力。我们展示了如此平滑流动的两个优点:它们允许通过力匹配匹配模拟数据,并且可以用作分子动力学模拟的电位。
translated by 谷歌翻译
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
translated by 谷歌翻译
从实验或模拟数据中学习对的相互作用对于分子模拟引起了极大的兴趣。我们提出了一种使用可区分的模拟(DIFFSIM)从数据中学习对相互作用的通用随机方法。 DIFFSIM通过分子动力学(MD)模拟定义了基于结构可观察物(例如径向分布函数)的损耗函数。然后,使用反向传播直接通过随机梯度下降直接学习相互作用电位,以通过MD模拟计算相互作用势的结构损耗度量标准的梯度。这种基于梯度的方法是灵活的,可以配置以同时模拟和优化多个系统。例如,可以同时学习不同温度或不同组合物的潜力。我们通过从径向分布函数中恢复简单的对电位(例如Lennard-Jones系统)来证明该方法。我们发现,与迭代Boltzmann倒置相比,DIFFSIM可用于探测配对电位的更广泛的功能空间。我们表明,我们的方法可用于同时拟合不同组成和温度下的模拟电位,以提高学习势的可传递性。
translated by 谷歌翻译
分子模拟的粗粒度(CG)通过将选定的原子分组为伪珠并大幅加速模拟来简化粒子的表示。但是,这种CG程序会导致信息损失,从而使准确的背景映射,即从CG坐标恢复细粒度(FG)坐标,这是一个长期存在的挑战。受生成模型和e象网络的最新进展的启发,我们提出了一个新型模型,该模型严格嵌入了背态转换的重要概率性质和几何一致性要求。我们的模型将FG的不确定性编码为不变的潜在空间,并通过Equivariant卷积将其解码为FG几何形状。为了标准化该领域的评估,我们根据分子动力学轨迹提供了三个综合基准。实验表明,我们的方法始终恢复更现实的结构,并以显着的边距胜过现有的数据驱动方法。
translated by 谷歌翻译
在分子动力学(MD)中,最近在量子机械数据上训练的神经网络(NN)潜力训练了巨大的成功。直接从实验数据学习NN电位的自上而下的方法在通过MD模拟背交时,通常面临着数值和计算挑战。我们介绍了可分辨率的轨迹重新重量(差异)方法,该方法通过MD模拟绕过差异,以对时间无关的可观察可观察。利用热力学扰动理论,避免爆炸梯度,并在自上而下学习的梯度计算中实现大约2次数量级加速。我们在基于多样化的实验可观察结果,表明了在学习NN电位学习NN电位的有效性,包括热力学,结构和机械性能的不同实验性观察。重要的是,衍射还概括了自下而上的结构粗晶体方法,例如迭代Boltzmann反转到任意潜力。呈现的方法构成了富有实验数据富集NN电位的重要里程碑,特别是当准确的自下而上数据不可用时。
translated by 谷歌翻译
标准化流是可易处理的密度模型,可以近似复杂的目标分布,例如物理系统的玻尔兹曼分布。但是,当前的训练流量要么具有寻求模式的行为,要么使用昂贵的MCMC模拟事先生成的目标样本,要么使用具有很高差异的随机损失。为了避免这些问题,我们以退火重要性采样(AIS)增强流量,并最大程度地减少覆盖$ \ alpha $ -divergence的质量,并使用$ \ alpha = 2 $,从而最大程度地减少了重要性的重量差异。我们的方法是流动性Bootstrap(Fab),使用AIS在流动较差的目标区域中生成样品,从而促进了新模式的发现。我们以AIS的最小差异分布来定位,以通过重要性抽样来估计$ \ alpha $ -Divergence。我们还使用优先的缓冲区来存储和重复使用AIS样本。这两个功能显着提高了Fab的性能。我们将FAB应用于复杂的多模式目标,并表明我们可以在以前的方法失败的情况下非常准确地近似它们。据我们所知,我们是第一个仅使用非均衡目标密度学习丙氨酸二肽分子的玻璃体分布,而无需通过分子动力学(MD)模拟生成的样品:FAB与通过最大可能性训练更好的效果,而不是通过最大可能性产生的结果。在MD样品上使用100倍的目标评估。在重新获得重要权重的样品后,我们获得了与地面真相几乎相同的二面角的无偏直方图。
translated by 谷歌翻译
与原子分辨率上可实现的分子量相比,粗晶片(CG)能够研究较大系统和更长的时间尺度的分子特性。最近已经提出了机器学习技术来学习CG粒子相互作用,即开发CG力场。分子的图表和图形卷积神经网络结构的监督训练用于通过力匹配方案来学习平均力的潜力。在这项工作中,作用在每个CG粒子上的力与以Schnet的名义相关的其本地环境的表示,该代表通过连续过滤器卷积构建。我们探讨了Schnet模型在获得液体苯的CG潜力的应用,研究模型结构和超参数对模拟CG系统的热力学,动力学和结构特性的影响,并报告和讨论所设想的挑战以及未来的指导。
translated by 谷歌翻译
在计算物理和化学中,增强的采样方法是必不可少的,由于采样问题,原子模拟无法详尽地对动态系统的高维配置空间进行采样。一类增强的抽样方法通过识别一些缓慢的自由度,称为集体变量(CVS)并增强沿这些CVS的采样来起作用。选择CVS来分析和驱动采样并不是微不足道的,并且通常依赖于物理和化学直觉。尽管使用流形学习通常会从标准模拟中直接估算CVS,但这种方法无法通过增强的采样模拟为低维流形提供映射,因为学到的歧管的几何形状和密度是有偏见的。在这里,我们解决了这个关键问题,并根据各向异性扩散图提供了一个普遍的重新加权框架,以考虑到流形学习,该框架考虑了学习数据集是从偏见的概率分布中采样的。我们考虑基于构建马尔可夫链的流形学习方法,描述了高维样品之间的过渡概率。我们表明,我们的框架恢复了偏置效应,从而产生了正确描述平衡密度的CV。这种进步可以直接从增强的采样模拟生成的数据中直接使用流形学习来构建低维CV。我们称我们的框架重新持续的流形学习。我们表明,它可以在来自标准和增强采样模拟的数据上的许多流形学习技术中使用。
translated by 谷歌翻译
分子动力学(MD)模拟是各种科学领域的主力,但受到高计算成本的限制。基于学习的力场在加速AB-Initio MD模拟方面取得了重大进展,但对于许多需要长期MD仿真的现实世界应用程序仍然不够快。在本文中,我们采用了一种不同的机器学习方法,使用图形群集将物理系统粗糙化,并使用图形神经网络使用非常大的时间整合步骤对系统演变进行建模。一个新型的基于分数的GNN改进模块解决了长期模拟不稳定性的长期挑战。尽管仅接受了简短的MD轨迹数据训练,但我们学到的模拟器仍可以推广到看不见的新型系统,并比训练轨迹更长的时间。需要10-100 ns级的长时间动力学的属性可以在多个刻度级的速度上准确恢复,而不是经典的力场。我们证明了方法对两个现实的复杂系统的有效性:(1)隐式溶剂中的单链粗粒聚合物; (2)多组分锂离子聚合物电解质系统。
translated by 谷歌翻译
我们提出了一种基于标准化流动的机器学习方法,用于建模原子固体。我们的模型将一个分析的易诊断分布转换为目标固体,而无需进行地面真实样品进行培训。我们向赫尔莫霍尔茨自由能量估算报告为单立方和六角形冰,如解象水,以及截断的leennard-jones系统,并发现它们与文学价值观的良好协议以及既定基线方法的估计。我们进一步研究了结构性,并表明模型样品几乎与分子动力学所获得的模型难以区分。因此,我们的结果表明,标准化流动可以提供高质量的样品和固体的自由能估计,而无需多阶段或用于对晶体几何体施加的限制。
translated by 谷歌翻译
Neural network (NN) potentials promise highly accurate molecular dynamics (MD) simulations within the computational complexity of classical MD force fields. However, when applied outside their training domain, NN potential predictions can be inaccurate, increasing the need for Uncertainty Quantification (UQ). Bayesian modeling provides the mathematical framework for UQ, but classical Bayesian methods based on Markov chain Monte Carlo (MCMC) are computationally intractable for NN potentials. By training graph NN potentials for coarse-grained systems of liquid water and alanine dipeptide, we demonstrate here that scalable Bayesian UQ via stochastic gradient MCMC (SG-MCMC) yields reliable uncertainty estimates for MD observables. We show that cold posteriors can reduce the required training data size and that for reliable UQ, multiple Markov chains are needed. Additionally, we find that SG-MCMC and the Deep Ensemble method achieve comparable results, despite shorter training and less hyperparameter tuning of the latter. We show that both methods can capture aleatoric and epistemic uncertainty reliably, but not systematic uncertainty, which needs to be minimized by adequate modeling to obtain accurate credible intervals for MD observables. Our results represent a step towards accurate UQ that is of vital importance for trustworthy NN potential-based MD simulations required for decision-making in practice.
translated by 谷歌翻译
了解复杂分子过程的动力学通常与长期稳定状态之间不经常过渡的研究有关。进行此类罕见事件采样的标准方法是使用轨迹空间中的随机步行生成过渡路径的集合。然而,这伴随着随后访问的路径之间的较强相关性和在平行采样过程中的内在难度之间存在很强的相关性。我们建议基于神经网络生成的配置的过渡路径采样方案。这些是采用归一化流量获得的,即能够从给定分布中生成非相关样品的神经网络类。使用这种方法,不仅删除了访问的路径之间的相关性,而且采样过程很容易平行。此外,通过调节归一化流,可以将配置的采样转向感兴趣的区域。我们表明,这允许解决过渡区域的热力学和动力学。
translated by 谷歌翻译
预测分子系统的结构和能量特性是分子模拟的基本任务之一,并且具有化学,生物学和医学的用例。在过去的十年中,机器学习算法的出现影响了各种任务的分子模拟,包括原子系统的财产预测。在本文中,我们提出了一种新的方法,用于将从简单分子系统获得的知识转移到更复杂的知识中,并具有明显的原子和自由度。特别是,我们专注于高自由能状态的分类。我们的方法依赖于(i)分子的新型超图表,编码所有相关信息来表征构象的势能,以及(ii)新的消息传递和汇总层来处理和对此类超图结构数据进行预测。尽管问题的复杂性,但我们的结果表明,从三丙氨酸转移到DECA-丙氨酸系统的转移学习中,AUC的AUC为0.92。此外,我们表明,相同的转移学习方法可以用无监督的方式分组,在具有相似的自由能值的簇中,deca-丙氨酸的各种二级结构。我们的研究代表了一个概念证明,即可以设计用于分子系统的可靠传输学习模型,为预测生物学相关系统的结构和能量性能的未开发途径铺平道路。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
从诸如蛋白质折叠或配体 - 受体结合如蛋白质 - 折叠或配体 - 受体结合等生物分子过程的长时间轨迹的低尺寸表示是基本的重要性和动力学模型,例如Markov建模,这些模型已经证明是有用的,用于描述这些系统的动力学。最近,引入了一种被称为vampnet的无监督机器学习技术,以以端到端的方式学习低维度表示和线性动态模型。 Vampnet基于Markov进程(VAMP)的变分方法,并依赖于神经网络来学习粗粒度的动态。在此贡献中,我们将Vampnet和图形神经网络组合生成端到端的框架,以从长时间的分子动力学轨迹有效地学习高级动态和亚稳态。该方法承载图形表示学习的优点,并使用图形消息传递操作来生成用于VAMPNET中使用的每个数据点以生成粗粒化表示的嵌入。这种类型的分子表示结果导致更高的分辨率和更可接定的Markov模型,而不是标准Vampnet,使得对生物分子过程更详细的动力学研究。我们的GraphVampNet方法也具有注意机制,以找到分类为不同亚稳态的重要残留物。
translated by 谷歌翻译
罕见事件计算研究中的一个中心对象是委员会函数。尽管计算成本高昂,但委员会功能编码涉及罕见事件的过程的完整机械信息,包括反应率和过渡状态合奏。在过渡路径理论(TPT)的框架下,最近的工作[1]提出了一种算法,其中反馈回路融合了一个神经网络,该神经网络将委员会功能建模为重要性采样,主要是伞形采样,该摘要收集了自适应训练所需的数据。在这项工作中,我们显示需要进行其他修改以提高算法的准确性。第一个修改增加了监督学习的要素,这使神经网络通过拟合从短分子动力学轨迹获得的委员会值的样本均值估计来改善其预测。第二个修改用有限的温度字符串(FTS)方法代替了基于委员会的伞采样,该方法可以在过渡途径的区域中进行均匀抽样。我们测试了具有非凸电势能的低维系统的修改,可以通过分析或有限元方法找到参考解决方案,并显示如何将监督学习和FTS方法组合在一起,从而准确地计算了委员会功能和反应速率。我们还为使用FTS方法的算法提供了错误分析,使用少数样品在训练过程中可以准确估算反应速率。然后将这些方法应用于未知参考溶液的分子系统,其中仍然可以获得委员会功能和反应速率的准确计算。
translated by 谷歌翻译
分子照片开关是光激活药物的基础。关键的照片开关是偶氮苯,它表现出对光线的反式cis异构主义。顺式异构体的热半衰期至关重要,因为它控制着光诱导的生物学效应的持续时间。在这里,我们介绍了一种计算工具,用于预测偶氮苯衍生物的热半衰期。我们的自动化方法使用了经过量子化学数据训练的快速准确的机器学习潜力。在建立在良好的早期证据的基础上,我们认为热异构化是通过Intersystem Crossing介导的旋转来进行的,并将这种机制纳入我们的自动化工作流程。我们使用我们的方法来预测19,000种偶氮苯衍生物的热半衰期。我们探索障碍和吸收波长之间的趋势和权衡,并开源我们的数据和软件以加速光精神病学研究。
translated by 谷歌翻译
我们介绍了一个名为统计信息的神经网络(SINN)的机器学习框架,用于从数据中学习随机动力学。从理论上讲,这种新的架构是受到随机系统的通用近似定理的启发,我们在本文中介绍了它,以及用于随机建模的投影手术形式。我们设计了训练神经网络模型的机制,以重现目标随机过程的正确\ emph {统计}行为。数值模拟结果表明,受过良好训练的SINN可以可靠地近似马尔可夫和非马克维亚随机动力学。我们证明了SINN对粗粒问题和过渡动力学的建模的适用性。此外,我们表明可以在时间粗粒的数据上训练所获得的减少阶模型,因此非常适合稀有事实模拟。
translated by 谷歌翻译
分子动力学(MD)仿真是一种强大的工具,用于了解物质的动态和结构。由于MD的分辨率是原子尺度,因此实现了使用飞秒集成的长时间模拟非常昂贵。在每个MD步骤中,执行许多可以学习和避免的冗余计算。这些冗余计算可以由像图形神经网络(GNN)的深度学习模型代替和建模。在这项工作中,我们开发了一个GNN加速分子动力学(GAMD)模型,实现了快速准确的力预测,并产生与经典MD模拟一致的轨迹。我们的研究结果表明,Gamd可以准确地预测两个典型的分子系统,Lennard-Jones(LJ)颗粒和水(LJ +静电)的动态。 GAMD的学习和推理是不可知论的,它可以在测试时间缩放到更大的系统。我们还进行了一项全面的基准测试,将GAMD的实施与生产级MD软件进行了比较,我们展示了GAMD在大规模模拟上对它们具有竞争力。
translated by 谷歌翻译