我们通过使用Openai的Codex进行计划综合解决大学级概率和统计问题,一个在文本上培训并在代码上进行微调的变压器。我们从MIT 18.05的课程问题转换为概率和统计信息和哈佛的Stat110概率转换为编程任务。然后,我们执行生成的代码以获得解决方案。由于这些课程问题在概率地基础上,我们往往的目标是具有Codex生成概率的程序,以模拟大量概率依赖项来计算其解决方案。我们的方法需要提示工程将问题从其原始表格转换为明确的,贸易的表格,导致正确的程序和解决方案。为了估计将原始问题转化为此易易表单所需的工作量,我们衡量了原始和转型问题之间的相似性。我们的工作是第一个推出大学级概率和统计问题的新数据集,并使用大型语言模型的程序综合能力以可扩展方式解决这些问题。
translated by 谷歌翻译
我们展示了在文本上预先培训的神经网络,并在代码上进行微调解决数学问题,通过程序合成解决了数学问题。我们将问题转化为编程任务,自动生成程序,然后从MIT的大型数学课程(单变微积分18.01,多变量计算18.02,微分方程18.03,概率和统计介绍18.05,概率和统计概要和统计概要和统计概要和统计概要和统计概要和统计概要和统计概要和统计概况概要和统计概要和统计概要和统计概率概述的大学级问题。 18.06,以及计算机科学的数学6.042)以及数学数据集的问题(在预先发生的地板,代数,计数和概率,数字理论和前进的问题上),最新数学问题的基准专门用于评估数学推理。我们探索提示生成方法,使变形金刚能够为这些主题生成问题解决程序,包括具有图的解决方案。我们在每个主题中的随机问题上生成正确的答案。我们量化了原始和转型问题之间的差距,并进行了调查以评估所产生的问题的质量和难度。这是在规模上自动解决,等级和生成大学数学课程问题的第一项工作,这代表了高等教育的里程碑。
translated by 谷歌翻译
我们通过互动计划合成,解决了MIT的线性代数18.06课程和哥伦比亚大学的计算线性代数COMS3251课程。这种令人惊讶的强烈的结果是通过将课程问题转化为编程任务,然后运行程序来实现正确的答案来实现。我们使用具有零拍摄学习的Openai Codex,而不在提示中提供任何示例,以将代码从问题上扫描。我们量化原始问题文本与转换问题文本之间的差异,从而产生正确答案。由于所有COMS3251问题都不在线提供,因此该模型不会过度装备。我们超越了仅通过交互式生成代码来为数值答案产生问题的代码,这也导致视觉上令人愉悦的绘图作为输出。最后,给出了一些可以用作新课程内容的示例问题,自动生成新问题。这项工作是解决定量数学问题的重要一步,并通过机器打开了解决许多大学级干课程的门。
translated by 谷歌翻译
语言模型在需要自然语言理解的各种任务上取得了非凡的表现。然而,最先进的模型通常在需要定量推理的任务上挣扎,例如在大学一级解决数学,科学和工程问题。为了帮助缩小这一差距,我们介绍了Minerva,Minerva是一种在一般自然语言数据上鉴定的大型语言模型,并进一步培训了技术内容。该模型在不使用外部工具的情况下实现了技术基准测试的最新性能。我们还评估了我们在需要定量推理的物理学,生物学,化学,经济学和其他科学方面的200多个本科生问题上评估我们的模型,并发现该模型可以正确回答其中几乎三分之一。
translated by 谷歌翻译
我们介绍了一种称为编程拼图的新型编程挑战,作为方案合成的客观和全面评估,并释放Python编程拼图的开源数据集(P3)。每个拼图由短Python程序$ F $定义,目标是找到一个使$ F $返回true的输入。谜题是目的,因为每个人都由其验证者$ F $的源代码完全指定,因此评估为测试候选解决方案所需的$ F $。它们不需要答案密钥或输入/输出示例,也不依赖于自然语言理解。该数据集是全面的,因为它跨越一系列困难和域的问题,从琐碎的字符串操纵问题,经典编程谜题(例如,河内塔),用于采访/竞争编程问题(例如,动态编程),在算法和数学中的长期开放问题(例如,因子)。我们开发基准枚举程序合成,GPT-3和能够解决难题的食盒求解器 - 即使没有访问任何参考解决方案 - 通过从他们自己的过去的解决方案中学习。 Codex表现最佳,解决高达18%的397个测试问题的测试问题,每次尝试和80%的问题占1,000个问题。在一个小的用户学习中,我们发现拼图解决性能和编码体验之间的正相关性,以及人类和AI求解器的难题难度之间。因此,P3的进一步改进可能对许多程序合成区域产生重大影响。
translated by 谷歌翻译
我们探索如何产生一系列思想 - 一系列中间推理步骤 - 显着提高了大语言模型执行复杂推理的能力。特别是,我们通过一种称为“思想链”提示的简单方法在足够大的语言模型中自然出现这种推理能力,在此过程中,一些思想示范被作为提示的示例提供了。三种大语模型的实验表明,促使思想链提高了一系列算术,常识和象征性推理任务的性能。经验收益可能会引人注目。例如,仅使用八个思想范围的540B参数语言模型才能在数学单词问题的GSM8K基准上实现最新的精度,甚至超过了带有验证器的Fineted GPT-3。
translated by 谷歌翻译
Despite recent success in large language model (LLM) reasoning, LLMs still struggle with hierarchical multi-step reasoning like generating complex programs. In these cases, humans often start with a high-level algorithmic design and implement each part gradually. We introduce Parsel, a framework enabling automatic implementation and validation of complex algorithms with code LLMs, based on hierarchical function descriptions in natural language. Parsel can be used across domains requiring hierarchical reasoning, e.g. code synthesis, theorem proving, and robotic planning. We demonstrate Parsel's capabilities by using it to generate complex programs that cannot currently be automatically implemented from one description and backtranslating Python programs in the APPS dataset. Beyond modeling capabilities, Parsel allows problem-solving with high-level algorithmic designs, benefiting both students and professional programmers.
translated by 谷歌翻译
促使模型表现出令人印象深刻的几次学习能力。在测试时间与单个模型或多个模型的组成一起重复相互作用,进一步扩展了功能。这些组成是概率模型,可以用具有随机变量的图形模型的语言表示,其值是复杂的数据类型,例如字符串。具有控制流和动态结构的情况需要概率编程的技术,这些技术允许以统一语言实施不同的模型结构和推理策略。我们从这个角度正式化了几种现有技术,包括刮擦板 /思想链,验证者,星星,选择 - 推动和工具使用。我们将结果程序称为语言模型级联。
translated by 谷歌翻译
We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
translated by 谷歌翻译
机器可以学习机器学习吗?我们建议使用我们用来回答类似问题的相同标准回答这个问题:人类学习机器学习吗?我们在人类级别的机器学习介绍中自动回答麻省理工学院的期末考试。该课程是一个大型的本科课程,每个学期约有五百名学生。最近,计划合成和几乎没有学习的学习解决了大学级问题,在人类层面设定了数学和STEM课程的问题。在这项工作中,我们从期末考试中解决了与问题集不同的问题:问题更长,有多个部分,更复杂,并且跨越了更广泛的主题。我们在2017年秋季至2022年春季之间的八项麻省理工学院介绍最终考试中提供了一个新的数据集和基准,并提供了自动回答这些问题并产生新问题的代码。我们进行消融研究,比较零拍的学习与几乎没有的学习,经过思考链的提示,GPT-3在文本上进行了预训练,并且在一系列机器学习主题上进行了代码进行了微调,并发现了很少的照片学习方法表现最好。我们将数据和代码公开用于机器学习社区。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译
虽然编程是现代社会中最广泛适用的技能之一,但现代机器学习模型仍然无法对基本问题的解决方案。尽管重要的是,对评估代码生成令人惊讶的是,很少有效,并且难以准确地评估代码生成性能。为了满足这一挑战,我们介绍了一个用于代码生成的基准。与在更受限制的设置中的事先工作不同,我们的基准测试衡量模型采取任意自然语言规范的能力,并生成满意的Python代码。类似于公司如何评估候选软件开发人员,然后我们通过检查测试用例的生成代码来评估模型。我们的基准测试包括10,000个问题,从具有简单的单线解决方案来实现实质性算法挑战。我们在GitHub和我们的培训集上微调大型语言模型,我们发现语法错误的普遍性随着模型的提高而导致呈指数级递减。最近的模型如GPT-Neo可以通过大约20%的介绍性问题的测试用例,因此我们发现机器学习模型现在开始学习如何代码。随着自动代码生成的社会意义在未来几年增加,我们的基准可以提供跟踪进步的重要措施。
translated by 谷歌翻译
当前的语言模型可以产生高质量的文本。他们只是复制他们之前看到的文本,或者他们学习了普遍的语言抽象吗?要取笑这些可能性,我们介绍了乌鸦,这是一套评估生成文本的新颖性,专注于顺序结构(n-gram)和句法结构。我们将这些分析应用于四种神经语言模型(LSTM,变压器,变换器-XL和GPT-2)。对于本地结构 - 例如,单个依赖性 - 模型生成的文本比来自每个模型的测试集的人类生成文本的基线显着不那么新颖。对于大规模结构 - 例如,总句结构 - 模型生成的文本与人生成的基线一样新颖甚至更新颖,但模型仍然有时复制,在某些情况下,在训练集中重复超过1000字超过1,000字的通道。我们还表现了广泛的手动分析,表明GPT-2的新文本通常在形态学和语法中形成良好,但具有合理的语义问题(例如,是自相矛盾)。
translated by 谷歌翻译
预处理的大语言模型(LLM)广泛用于自然语言处理(NLP)的许多子场,通常被称为具有特定任务示例的优秀少数学习者。值得注意的是,思想链(COT)提示,这是一种通过分步答案示例引发复杂的多步推理的技术,在算术和符号推理中实现了最新的表演,难以置信的System-2任务不遵循LLMS的标准缩放定律。尽管这些成功通常归因于LLM的几次学习能力,但我们表明,LLM是通过在每个答案之前简单地添加“让我们逐步思考”而成为不错的零射击推理者。实验结果表明,使用相同的单个提示模板,我们的零射击功能明显优于零摄像机LLM在不同的基准推理任务上的零摄像机表现,包括算术(Multiarith,GSM8K,Aqua-Rat,SVAMP,SVAMP),符号推理(最后一个字母,字母,字母,字母,,,,,字母,字母)(最后一个字母),硬币翻转)和其他逻辑推理任务(日期理解,跟踪洗牌对象),而没有任何手工制作的几个示例,例如通过175B参数指令gpt模型将Multiarith的准确性从17.7%提高到78.7%,GSM8K从10.4%提高到40.7%,以及另一种现成的大型模型,540B参数Palm Palm的相似改进。在非常多样化的推理任务中,这个单一提示的多功能性暗示了LLM的尚未开发和研究的基本零拍功能,这表明可以通过简单提示来提取高级,多任务的广泛认知能力。我们希望我们的工作不仅可以作为具有挑战性的推理基准的最小零击基线,而且还强调了仔细探索和分析LLM中隐藏在LLM中的巨大的零拍知识的重要性,然后在制作Finetunning数据集或少数拍摄的典范之前。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
大型语言模型,例如OpenAI的法典和DeepMind的字母,可以生成代码来解决以自然语言表达的各种问题。这项技术已经在至少一项广泛使用的编程编辑器扩展程序中进行了商业化:Github Copilot。在本文中,我们探讨了具有大型语言模型(LLM辅助编程)的编程与程序员协助的先前概念化相似,并且与众不同。我们借鉴了公开可用的经验报告,有关LLM辅助编程以及先前的可用性和设计研究。我们发现,尽管LLM辅助编程通过搜索和重用分享了一些编译,配对编程和编程的属性,但技术可能性和实践经验都存在根本差异。因此,应该将LLM辅助编程视为具有自己独特的属性和挑战的新方法。最后,我们借鉴了用户研究的观察结果,在该观察中,非专家最终用户程序员使用LLM辅助工具来求解电子表格中的数据任务。我们讨论可能出现的问题,并在将大型语言模型应用于最终用户编程时,尤其是对于几乎没有编程专业知识的用户。
translated by 谷歌翻译
本文探讨了大语言模型的自然语言生成能力,并应用于编程课程中常见的两种学习资源类型。使用OpenAI Codex作为大语言模型,我们创建编程练习(包括示例解决方案和测试用例)和代码说明,从定性和定量上评估这些练习。我们的结果表明,大多数自动生成的内容既新颖又明智,在某些情况下可以按原样使用。在创建练习时,我们发现仅通过提供关键字作为模型输入来影响编程概念和它们所包含的上下文主题非常容易。我们的分析表明,大规模生成机器学习模型是指导者的工具,尽管仍然需要进行一些监督以确保生成的内容的质量在传递给学生之前。我们进一步讨论了OpenAI Codex和类似工具对入门编程教育的含义,并强调了未来的研究流,这些研究流有可能提高教师和学生的教育体验质量。
translated by 谷歌翻译
许多智力努力需要解决数学问题,但这种技能仍然超出了计算机的能力。为了测量机器学习模型中的这种能力,我们介绍了数学,这是一个12,500个挑战性竞争数学问题的新数据集。数学中的每个问题都有一个完整的逐步解决方案,可用于教授模型来生成答案派生和解释。为了促进未来的研究和提高数学准确性,我们还提供了一个大型辅助预制数据集,有助于教导模型数学的基本原则。尽管我们能够提高数学准确性,但我们的结果表明,即使有巨大的变压器模型,即使有巨大的变压器模型也是相对较低的。此外,我们发现,如果缩放趋势持续,则无法增加预算和模型参数计数对于实现强大的数学推理,这将是不切实际的。虽然缩放变压器正在自动解决大多数基于文本的任务,但缩放目前没有解决数学。为了在数学问题上进行更多牵引,我们可能需要更广泛的研究界的新算法进步。
translated by 谷歌翻译
象征性的AI社区越来越多地试图在神经符号结构中接受机器学习,但由于文化障碍,仍在挣扎。为了打破障碍,这份相当有思想的个人备忘录试图解释和纠正统计,机器学习和深入学习的惯例,从局外人的角度进行深入学习。它提供了一个分步协议,用于设计一个机器学习系统,该系统满足符号AI社区认真对待所必需的最低理论保证,即,它讨论“在哪些条件下,我们可以停止担心和接受统计机器学习。 “一些亮点:大多数教科书都是为计划专门研究STAT/ML/DL的人编写的,应该接受术语。该备忘录适用于经验丰富的象征研究人员,他们听到了很多嗡嗡声,但仍然不确定和持怀疑态度。有关STAT/ML/DL的信息目前太分散或嘈杂而无法投资。此备忘录优先考虑紧凑性,并特别注意与象征性范式相互共鸣的概念。我希望这份备忘录能节省时间。它优先考虑一般数学建模,并且不讨论任何特定的函数近似器,例如神经网络(NNS),SVMS,决策树等。它可以对校正开放。将此备忘录视为与博客文章相似的内容,采用有关Arxiv的论文的形式。
translated by 谷歌翻译
推理是人类认知和智力的关键支柱。在过去的十年中,我们目睹了自然语言处理的巨大收益和大型语言模型的前所未有的缩放。最近的工作表征了很少射击技术的能力,例如思想链,可以在大语言模型中模仿人类的推理。这个标志性的功能很少,连同不断扩展的语言模型相结合,打开了解决各种任务的可能性的远景,例如数学单词问题,代码完成和常识性推理。促使思想链(COT)通过提供中间步骤并敦促模型遵循相同的过程,从而进一步推动了模型的性能。尽管具有令人信服的性能,但在这些模型中推理能力的起源却很少探索。这项工作启动了对大语言模型中推理机制的更深入了解的初步步骤。我们的工作围绕查询模型,同时在提示中控制除一个组件以外的所有组件外:符号,模式和文本。然后,我们分析查询之间的性能差异。我们的结果表明,在提示中存在事实模式对于COT的成功并不是必需的。尽管如此,我们从经验上表明,仅依靠模式也不足以获得高质量的结果。我们认为文本具有常识性知识和意义。我们详尽的经验分析提供了定性的例子,说明了文本和模式之间的共生关系。这种对COT的系统理解使我们能够设计简洁的思想链,被称为CCOT,在其中修剪文本和模式只能保留其关键角色,同时以PAR或更高的求解任务率交付。
translated by 谷歌翻译