Despite recent success in large language model (LLM) reasoning, LLMs still struggle with hierarchical multi-step reasoning like generating complex programs. In these cases, humans often start with a high-level algorithmic design and implement each part gradually. We introduce Parsel, a framework enabling automatic implementation and validation of complex algorithms with code LLMs, based on hierarchical function descriptions in natural language. Parsel can be used across domains requiring hierarchical reasoning, e.g. code synthesis, theorem proving, and robotic planning. We demonstrate Parsel's capabilities by using it to generate complex programs that cannot currently be automatically implemented from one description and backtranslating Python programs in the APPS dataset. Beyond modeling capabilities, Parsel allows problem-solving with high-level algorithmic designs, benefiting both students and professional programmers.
translated by 谷歌翻译
我们介绍了一种称为编程拼图的新型编程挑战,作为方案合成的客观和全面评估,并释放Python编程拼图的开源数据集(P3)。每个拼图由短Python程序$ F $定义,目标是找到一个使$ F $返回true的输入。谜题是目的,因为每个人都由其验证者$ F $的源代码完全指定,因此评估为测试候选解决方案所需的$ F $。它们不需要答案密钥或输入/输出示例,也不依赖于自然语言理解。该数据集是全面的,因为它跨越一系列困难和域的问题,从琐碎的字符串操纵问题,经典编程谜题(例如,河内塔),用于采访/竞争编程问题(例如,动态编程),在算法和数学中的长期开放问题(例如,因子)。我们开发基准枚举程序合成,GPT-3和能够解决难题的食盒求解器 - 即使没有访问任何参考解决方案 - 通过从他们自己的过去的解决方案中学习。 Codex表现最佳,解决高达18%的397个测试问题的测试问题,每次尝试和80%的问题占1,000个问题。在一个小的用户学习中,我们发现拼图解决性能和编码体验之间的正相关性,以及人类和AI求解器的难题难度之间。因此,P3的进一步改进可能对许多程序合成区域产生重大影响。
translated by 谷歌翻译
大型语言模型已经证明了能够在自然语言和编程语言文本上进行条件和生成的能力。这样的模型打开了多语言代码生成的可能性:代码生成模型是否可以将知识从一种语言推广到另一种语言?尽管当代代码生成模型可以生成语义上正确的Python代码,但对它们使用其他语言的能力知之甚少。我们通过提出Multipl-E来促进该主题的探索,这是自然语言到代码生成的第一个多语言平行基准。 Multipl-E扩展了HumaneVal基准(Chen等,2021),以支持另外18种编程语言,涵盖了一系列编程范式和受欢迎程度。我们在Multipl-E:Codex和Incoder上评估了两个最先进的代码生成模型。我们发现,在几种语言上,法典匹配,甚至超过了其在Python上的性能。在多型E中表示的编程语言范围使我们能够探索语言频率和语言功能对模型性能的影响。最后,将代码生成基准分配给新编程语言的多重方法既可扩展又可扩展。我们描述了一种通用方法,可以轻松地增加对新基准和语言的支持。
translated by 谷歌翻译
自动程序合成是软件工程中的持久梦想。最近,Open AI和Microsoft提出了一种有希望的深度学习(DL)解决方案,称为Copilot,作为工业产品。尽管一些研究评估了副驾驶解决方案的正确性并报告其问题,但需要进行更多的经验评估,以了解开发人员如何有效地受益。在本文中,我们研究了两项不同的编程任务中副标士的功能:(1)为基本算法问题生成(和复制)正确,有效的解决方案,(2)将副副副总裁与人类程序员的建议解决方案与一组人的建议解决方案进行比较编程任务。对于前者,我们评估副铜在解决计算机科学中选定的基本问题(例如对基本数据结构的基本问题)中的性能和功能。在后者中,使用人提供的解决方案的编程问题数据集。结果表明,Copilot能够为几乎所有基本算法问题提供解决方案,但是,某些解决方案是越野车且不可复制的。此外,Copilot在组合多种方法来生成解决方案方面存在一些困难。将副驾驶员与人类进行比较,我们的结果表明,人类溶液的正确比率大于副本的正确比率,​​而副铜产生的越野车解决方案需要更少的努力来维修。尽管本研究和以前的研究中的强调,副柯洛特(Copilot)作为开发人员特别是在高级编程任务中的助手表现出局限性,但它可以为基本编程任务生成初步解决方案。
translated by 谷歌翻译
本文探讨了大语言模型的自然语言生成能力,并应用于编程课程中常见的两种学习资源类型。使用OpenAI Codex作为大语言模型,我们创建编程练习(包括示例解决方案和测试用例)和代码说明,从定性和定量上评估这些练习。我们的结果表明,大多数自动生成的内容既新颖又明智,在某些情况下可以按原样使用。在创建练习时,我们发现仅通过提供关键字作为模型输入来影响编程概念和它们所包含的上下文主题非常容易。我们的分析表明,大规模生成机器学习模型是指导者的工具,尽管仍然需要进行一些监督以确保生成的内容的质量在传递给学生之前。我们进一步讨论了OpenAI Codex和类似工具对入门编程教育的含义,并强调了未来的研究流,这些研究流有可能提高教师和学生的教育体验质量。
translated by 谷歌翻译
预先训练的大语言模型(LLM)(例如OpenAI Codex)通过从非正式自然语言(NL)意图中生成自然代码来自动化编码的重要方面。但是,生成的代码无法满足用户意图的任何正确性保证。实际上,很难定义正确性的概念,因为自然语言可能是模棱两可的,并且缺乏正式的语义。在本文中,我们通过提出测试驱动的用户形式化(TDUIF)的工作流程来解决以上问题的第一步,该工作流利用轻量级用户的反馈共同将用户的意图正式化为测试(部分规范) ),(b)生成符合正式用户意图的代码。要对算法进行可扩展的大规模自动化评估,而无需循环中的用户,我们描述了如何使用参考解决方案模拟用户与高保真性的互动。我们还描述并实施了几种算法组件(包括突变和排名一组测试)的替代实现,这些实现可用于有效解决TDUIF问题。我们已经开发了一个系统的Ticoder,该系统实现了多种解决方案来进行TDUIF,并将其对MBPP学术代码生成基准测试的相对有效性进行了比较。在MBPP上使用OpenAI Codex LLM的结果很有希望:我们的最佳算法将通行证@1代码生成准确度指标从48.39%提高到单个用户查询,最高为85.48%,最多可达55.48%,最多可提供5个用户查询。其次,我们可以生成与用户意图在1.69个用户查询中的非平凡功能单位测试,该数据集为90.40%的示例,用于此数据集。
translated by 谷歌翻译
Large language models have demonstrated outstanding performance on a wide range of tasks such as question answering and code generation. On a high level, given an input, a language model can be used to automatically complete the sequence in a statistically-likely way. Based on this, users prompt these models with language instructions or examples, to implement a variety of downstream tasks. Advanced prompting methods can even imply interaction between the language model, a user, and external tools such as calculators. However, to obtain state-of-the-art performance or adapt language models for specific tasks, complex task- and model-specific programs have to be implemented, which may still require ad-hoc interaction. Based on this, we present the novel idea of Language Model Programming (LMP). LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting. Additionally, LMP allows constraints to be specified over the language model output. This enables easy adaption to many tasks, while abstracting language model internals and providing high-level semantics. To enable LMP, we implement LMQL (short for Language Model Query Language), which leverages the constraints and control flow from an LMP prompt to generate an efficient inference procedure that minimizes the number of expensive calls to the underlying language model. We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way, especially facilitating interactive flows that are challenging to implement with existing high-level APIs. Our evaluation shows that we retain or increase the accuracy on several downstream tasks, while also significantly reducing the required amount of computation or cost in the case of pay-to-use APIs (13-85% cost savings).
translated by 谷歌翻译
这项工作表明了如何以编程难题的形式使用大规模语言模型(LMS)与经过验证的解决方案合成编程问题,然后可以将其用于微调相同的模型,从而提高其性能。这项工作以最近的两项发展为基础。首先,LMS在非平凡的推理和算法实施中取得了突破,生成可以解决某些中级竞争性编程问题的代码。但是,培训代码LMS涉及策划的一组自然语言问题描述以及源代码测试和解决方案,这些测试和解决方案的大小有限。其次,引入了一种新的编程挑战格式,称为编程难题,该格式不需要自然语言描述,并通过源代码测试直接指定。在这项工作中,我们展示了如何使用Python解释器验证的合成编程难题和解决方案,可用于改善从P3求解测试难题的性能,P3是一套Python公共基准的Python编程难题。此外,我们发布了由Codex模型生成的100万个难题和解决方案的数据集,我们证明可以通过微调改善较小的模型。
translated by 谷歌翻译
General mathematical reasoning is computationally undecidable, but humans routinely solve new problems. Moreover, discoveries developed over centuries are taught to subsequent generations quickly. What structure enables this, and how might that inform automated mathematical reasoning? We posit that central to both puzzles is the structure of procedural abstractions underlying mathematics. We explore this idea in a case study on 5 sections of beginning algebra on the Khan Academy platform. To define a computational foundation, we introduce Peano, a theorem-proving environment where the set of valid actions at any point is finite. We use Peano to formalize introductory algebra problems and axioms, obtaining well-defined search problems. We observe existing reinforcement learning methods for symbolic reasoning to be insufficient to solve harder problems. Adding the ability to induce reusable abstractions ("tactics") from its own solutions allows an agent to make steady progress, solving all problems. Furthermore, these abstractions induce an order to the problems, seen at random during training. The recovered order has significant agreement with the expert-designed Khan Academy curriculum, and second-generation agents trained on the recovered curriculum learn significantly faster. These results illustrate the synergistic role of abstractions and curricula in the cultural transmission of mathematics.
translated by 谷歌翻译
源代码的最先进的神经模型倾向于在代码的生成时进行评估,并且通常在长地平任务中的产生,例如整个方法体的产生。我们建议使用静态程序分析仪的弱监督来解决这一缺陷。我们的神经统计方法允许深入的生成模型来象征地计算它已经生成的代码中的静态分析工具,长距离语义关系。在培训期间,该模型观察这些关系,并学习生成条件上的程序。考虑到包含该方法的类的剩余部分,我们将我们的方法应用于生成整个Java方法的问题。我们的实验表明,该方法显着地优于最先进的变换器和模型,明确试图在制作程序中没有基本语义错误的程序以及在句法匹配地面真理方面来学习此任务的模型。
translated by 谷歌翻译
回答集编程(ASP)已成为一种流行的和相当复杂的声明问题解决方法。这是由于其具有吸引力的地址解决方案的工作流程,这是可以轻松解决问题解决的方法,即使对于计算机科学外的守护者而言。与此不同,底层技术的高度复杂性使得ASP专家越来越难以将想法付诸实践。有关解决此问题,本教程旨在使用户能够构建自己的基于ASP的系统。更确切地说,我们展示了ASP系统Clingo如何用于扩展ASP和实现定制的专用系统。为此,我们提出了两个替代方案。我们从传统的AI技术开始,并展示元编程如何用于扩展ASP。这是一种相当轻的方法,依赖于Clingo的reation特征来使用ASP本身表达新功能。与此不同,本教程的主要部分使用传统的编程(在Python中)来通过其应用程序编程接口操纵Clingo。这种方法允许改变和控制ASP的整个模型 - 地面解决工作流程。 COMENT of Clingo的新应用程序课程使我们能够通过自定义类似于Clingo中的进程来绘制Clingo的基础架构。例如,我们可能会互动到程序的抽象语法树,控制各种形式的多射击求解,并为外国推论设置理论传播者。另一种横截面结构,跨越元以及应用程序编程是Clingo的中间格式,即指定底层接地器和求解器之间的界面。我们通过示例和几个非琐碎的案例研究说明了本教程的前述概念和技术。
translated by 谷歌翻译
Computational notebooks, such as Jupyter notebooks, are interactive computing environments that are ubiquitous among data scientists to perform data wrangling and analytic tasks. To measure the performance of AI pair programmers that automatically synthesize programs for those tasks given natural language (NL) intents from users, we build ARCADE, a benchmark of 1082 code generation problems using the pandas data analysis framework in data science notebooks. ARCADE features multiple rounds of NL-to-code problems from the same notebook. It requires a model to understand rich multi-modal contexts, such as existing notebook cells and their execution states as well as previous turns of interaction. To establish a strong baseline on this challenging task, we develop PaChiNCo, a 62B code language model (LM) for Python computational notebooks, which significantly outperforms public code LMs. Finally, we explore few-shot prompting strategies to elicit better code with step-by-step decomposition and NL explanation, showing the potential to improve the diversity and explainability of model predictions.
translated by 谷歌翻译
虽然编程是现代社会中最广泛适用的技能之一,但现代机器学习模型仍然无法对基本问题的解决方案。尽管重要的是,对评估代码生成令人惊讶的是,很少有效,并且难以准确地评估代码生成性能。为了满足这一挑战,我们介绍了一个用于代码生成的基准。与在更受限制的设置中的事先工作不同,我们的基准测试衡量模型采取任意自然语言规范的能力,并生成满意的Python代码。类似于公司如何评估候选软件开发人员,然后我们通过检查测试用例的生成代码来评估模型。我们的基准测试包括10,000个问题,从具有简单的单线解决方案来实现实质性算法挑战。我们在GitHub和我们的培训集上微调大型语言模型,我们发现语法错误的普遍性随着模型的提高而导致呈指数级递减。最近的模型如GPT-Neo可以通过大约20%的介绍性问题的测试用例,因此我们发现机器学习模型现在开始学习如何代码。随着自动代码生成的社会意义在未来几年增加,我们的基准可以提供跟踪进步的重要措施。
translated by 谷歌翻译
大型语言模型,例如OpenAI的法典和DeepMind的字母,可以生成代码来解决以自然语言表达的各种问题。这项技术已经在至少一项广泛使用的编程编辑器扩展程序中进行了商业化:Github Copilot。在本文中,我们探讨了具有大型语言模型(LLM辅助编程)的编程与程序员协助的先前概念化相似,并且与众不同。我们借鉴了公开可用的经验报告,有关LLM辅助编程以及先前的可用性和设计研究。我们发现,尽管LLM辅助编程通过搜索和重用分享了一些编译,配对编程和编程的属性,但技术可能性和实践经验都存在根本差异。因此,应该将LLM辅助编程视为具有自己独特的属性和挑战的新方法。最后,我们借鉴了用户研究的观察结果,在该观察中,非专家最终用户程序员使用LLM辅助工具来求解电子表格中的数据任务。我们讨论可能出现的问题,并在将大型语言模型应用于最终用户编程时,尤其是对于几乎没有编程专业知识的用户。
translated by 谷歌翻译
人类开发人员可以使用网络安全缺陷生产代码。可以新兴'智能'代码完成工具有助于修复这些缺点吗?在这项工作中,我们研究了对零拍摄漏洞修复的代码(如Openai的Codex和AI21的侏罗纪J-1)使用大型语言模型(如Openai的Codex和AI21的J-1)。我们调查设计方面的挑战,提示将Coax LLMS进入生成不安全代码的修复版本。由于许多方法来短语和句法 - 具有自然语言,这很困难。通过对四个商业,黑盒子,“现成的”典型的模型进行大规模研究,以及局部训练的模型,在合成,手工制作和现实世界的安全错误场景的混合中,我们的实验表明,LLMS可以共同修复100%的综合生成和手工制作的情景,以及58%的脆弱性,在真实的开源项目中的历史错误中选择。
translated by 谷歌翻译
We address the general task of structured commonsense reasoning: given a natural language input, the goal is to generate a graph such as an event -- or a reasoning-graph. To employ large language models (LMs) for this task, existing approaches ``serialize'' the output graph as a flat list of nodes and edges. Although feasible, these serialized graphs strongly deviate from the natural language corpora that LMs were pre-trained on, hindering LMs from generating them correctly. In this paper, we show that when we instead frame structured commonsense reasoning tasks as code generation tasks, pre-trained LMs of code are better structured commonsense reasoners than LMs of natural language, even when the downstream task does not involve source code at all. We demonstrate our approach across three diverse structured commonsense reasoning tasks. In all these natural language tasks, we show that using our approach, a code generation LM (CODEX) outperforms natural-LMs that are fine-tuned on the target task (e.g., T5) and other strong LMs such as GPT-3 in the few-shot setting.
translated by 谷歌翻译
大多数低编码平台的用户,例如Excel和PowerApps,都以特定于域的公式语言编写程序来执行非平凡的任务。用户通常可以编写他们想要的大部分程序,但是引入了一些小错误,这些错误会产生破损的公式。这些错误既可以是句法和语义,也很难让低代码用户识别和修复,即使只能通过一些编辑解决。我们正式化了产生最后一英里维修问题等编辑的问题。为了解决这个问题,我们开发了Lamirage,这是一种最后一英里的维修发动机发电机,结合了符号和神经技术,以低代码公式语言进行最后一英里维修。 Lamirage采用语法和一组特定领域的约束/规则,它们共同近似目标语言,并使用它们来生成可以用该语言修复公式的维修引擎。为了应对本地化错误和对候选维修进行排名的挑战,Lamirage利用神经技术,而它依赖于符号方法来生成候选维修。这种组合使Lamirage可以找到满足提供的语法和约束的维修,然后选择最自然的修复。我们将Lamirage与400个Real Excel和PowerFX公式的最新神经和符号方法进行了比较,其中Lamirage的表现优于所有基线。我们释放这些基准,以鼓励在低代码域中进行后续工作。
translated by 谷歌翻译
大型预先训练的语言模型可以在可以在一个可以“单通”中的任务上进行非常好,例如生成现实文本或合成计算机程序。但是,他们与需要无限的多步计算的任务斗争,例如添加整数或执行程序。令人惊讶的是,我们发现这些相同的模型能够执行复杂的多步计算 - 即使在少量射门中,当被要求执行操作“一步一步”时,表示中间计算的结果。特别是,我们通过询问它们将中间计算步骤发出到“ScratchPad”来执行变压器来执行多步计算。在一系列越来越复杂的任务范围内,从加入任意程序的执行范围,我们表明Scratchpads显着提高了语言模型执行多步计算的能力。
translated by 谷歌翻译
归纳逻辑编程(ILP)是一种机器学习的形式。ILP的目标是诱导推广培训示例的假设(一组逻辑规则)。随着ILP转30,我们提供了对该领域的新介绍。我们介绍了必要的逻辑符号和主要学习环境;描述ILP系统的构建块;比较几个维度的几个系统;描述四个系统(Aleph,Tilde,Aspal和Metagol);突出关键应用领域;最后,总结了未来研究的当前限制和方向。
translated by 谷歌翻译
任务计划可能需要定义有关机器人需要采取行动的世界的无数领域知识。为了改善这项工作,可以使用大型语言模型(LLM)在任务计划期间为潜在的下一个操作评分,甚至直接生成动作序列,鉴于没有其他域信息的自然语言指令。但是,这样的方法要么需要列举所有可能的下一步评分,要么生成可能包含在当前机器人中给定机器人上不可能操作的自由形式文本。我们提出了一个程序化的LLM提示结构,该结构能够跨越位置环境,机器人功能和任务的计划生成功能。我们的关键见解是提示LLM具有环境中可用操作和对象的类似程序的规格,以及可以执行的示例程序。我们通过消融实验提出了有关迅速结构和生成约束的具体建议,证明了虚拟屋家庭任务中最先进的成功率,并将我们的方法部署在桌面任务的物理机器人组上。网站progprompt.github.io
translated by 谷歌翻译