Bayesian inference without the likelihood evaluation, or likelihood-free inference, has been a key research topic in simulation studies for gaining quantitatively validated simulation models on real-world datasets. As the likelihood evaluation is inaccessible, previous papers train the amortized neural network to estimate the ground-truth posterior for the simulation of interest. Training the network and accumulating the dataset alternatively in a sequential manner could save the total simulation budget by orders of magnitude. In the data accumulation phase, the new simulation inputs are chosen within a portion of the total simulation budget to accumulate upon the collected dataset. This newly accumulated data degenerates because the set of simulation inputs is hardly mixed, and this degenerated data collection process ruins the posterior inference. This paper introduces a new sampling approach, called Neural Proposal (NP), of the simulation input that resolves the biased data collection as it guarantees the i.i.d. sampling. The experiments show the improved performance of our sampler, especially for the simulations with multi-modal posteriors.
translated by 谷歌翻译
A simulation is useful when the phenomenon of interest is either expensive to regenerate or irreproducible with the same context. Recently, Bayesian inference on the distribution of the simulation input parameter has been implemented sequentially to minimize the required simulation budget for the task of simulation validation to the real-world. However, the Bayesian inference is still challenging when the ground-truth posterior is multi-modal with a high-dimensional simulation output. This paper introduces a regularization technique, namely Neural Posterior Regularization (NPR), which enforces the model to explore the input parameter space effectively. Afterward, we provide the closed-form solution of the regularized optimization that enables analyzing the effect of the regularization. We empirically validate that NPR attains the statistically significant gain on benchmark performances for diverse simulation tasks.
translated by 谷歌翻译
Simulation-based inference (SBI) solves statistical inverse problems by repeatedly running a stochastic simulator and inferring posterior distributions from model-simulations. To improve simulation efficiency, several inference methods take a sequential approach and iteratively adapt the proposal distributions from which model simulations are generated. However, many of these sequential methods are difficult to use in practice, both because the resulting optimisation problems can be challenging and efficient diagnostic tools are lacking. To overcome these issues, we present Truncated Sequential Neural Posterior Estimation (TSNPE). TSNPE performs sequential inference with truncated proposals, sidestepping the optimisation issues of alternative approaches. In addition, TSNPE allows to efficiently perform coverage tests that can scale to complex models with many parameters. We demonstrate that TSNPE performs on par with previous methods on established benchmark tasks. We then apply TSNPE to two challenging problems from neuroscience and show that TSNPE can successfully obtain the posterior distributions, whereas previous methods fail. Overall, our results demonstrate that TSNPE is an efficient, accurate, and robust inference method that can scale to challenging scientific models.
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
通过最小化kullback-leibler(kl)差异,变化推断近似于非差异分布。尽管这种差异对于计算有效,并且已在应用中广泛使用,但它具有一些不合理的属性。例如,它不是一个适当的度量标准,即,它是非对称的,也不保留三角形不等式。另一方面,最近的最佳运输距离显示出比KL差异的一些优势。在这些优势的帮助下,我们通过最大程度地减少切片的瓦斯汀距离,这是一种由最佳运输产生的有效度量,提出了一种新的变异推理方法。仅通过运行MCMC而不能解决任何优化问题,就可以简单地近似切片的Wasserstein距离。我们的近似值也不需要变异分布的易于处理密度函数,因此诸如神经网络之类的发电机可以摊销近似家庭。此外,我们提供了方法的理论特性分析。说明了关于合成和真实数据的实验,以显示提出的方法的性能。
translated by 谷歌翻译
神经密度估计值证明在各种研究领域进行高效的仿真贝叶斯推理方面具有显着强大。特别是,Bayesflow框架使用两步方法来实现在仿真程序隐式地定义似然函数的设置中的摊销参数估计。但是当模拟是现实差的差异时,这种推断是多么忠实?在本文中,我们概念化了基于模拟的推论中出现的模型误操作的类型,并系统地研究了这些误操作下的Bayesflow框架的性能。我们提出了一个增强优化目标,它对潜伏数据空间上的概率结构施加了概率结构,并利用了最大平均差异(MMD)来检测推理期间的可能灾难性的误操作,破坏了所获得的结果的有效性。我们验证了许多人工和现实的误操作的检测标准,从玩具共轭模型到复杂的决策和疾病爆发动态的复杂模型应用于实际数据。此外,我们表明后部推理误差随着真实数据生成分布与潜在摘要空间中的典型模拟集之间的常数而增加。因此,我们展示了MMD的双重实用性作为检测模型误操作的方法和作为验证摊销贝叶斯推理的忠实性的代理。
translated by 谷歌翻译
最近介绍基于梯度的MCMC用于离散空间具有巨大的希望,并带来了新离散的可能性的诱人可能性,即MALA和HMC等著名的连续方法。为了实现这一目标,我们介绍了几个在概念上受到MALA启发的分离大都会杂货样本,并在贝叶斯推理和基于能量的建模中表现出了一系列具有挑战性的采样问题。从方法上讲,我们确定了为什么对预处理的MALA的离散类似物通常是棘手的,激发了我们基于辅助变量和“高斯整体技巧”引入一种新型的预处理。
translated by 谷歌翻译
我们介绍了本地自动平衡采样器(LSB),这是一种本地马尔可夫链蒙特卡洛(MCMC)方法,用于在纯离散域中采样,该方法能够自主适应目标分布并减少收敛所需的目标评估数量。LSB基于(i)局部平衡建议的参数化,(ii)基于相互信息的新提出的目标函数和(iii)自平衡学习过程,该过程最大程度地降低了提议的目标以更新提案参数。基于能量的模型和马尔可夫网络的实验表明,与最近的本地MCMC采样器相比,LSB使用较少数量的Oracle分布收敛。
translated by 谷歌翻译
在没有明确或易于处理的可能性的情况下,贝叶斯人经常诉诸于贝叶斯计算(ABC)进行推理。我们的工作基于生成的对抗网络(GAN)和对抗性变分贝叶斯(GAN),为ABC桥接了ABC。 ABC和GAN都比较了观察到的数据和假数据的各个方面,分别从后代和似然模拟。我们开发了一个贝叶斯gan(B-GAN)采样器,该采样器通过解决对抗性优化问题直接靶向后部。 B-GAN是由有条件gan在ABC参考上学习的确定性映射驱动的。一旦训练了映射,就可以通过以可忽略的额外费用过滤噪声来获得IID后样品。我们建议使用(1)数据驱动的提案和(2)变化贝叶斯提出两项后处理的本地改进。我们通过常见的bayesian结果支持我们的发现,表明对于某些神经网络发生器和歧视器,真实和近似后骨之间的典型总变化距离收敛到零。我们对模拟数据的发现相对于一些最新的无可能后验模拟器显示出竞争激烈的性能。
translated by 谷歌翻译
最近推出的热集成技术已经了解并改善变推理(VI),提供了一个新的框架。在这项工作中,我们提出了热力学变目标(TVO)的仔细分析,弥合现有的变分目标和脱落的新见解,以推动该领域的差距。特别是,我们阐明了如何将TVO自然连接三个关键变方案,即重要性加权VI,仁义-VI,和MCMC-VI,它包含了最VI目标在实践中采用。为了解释理论和实践之间的性能差距,我们揭示热力学曲线的病理几何形状是如何产生负面影响TVO。通过推广加权平均持有人从几何平均值的整合路径,我们扩展TVO的理论和发现提高VI新的机遇。这促使我们的新VI的目标,命名为持有人的边界,这拼合热力学曲线和承诺,以实现精确的边缘数似然的一步逼近。提供对数字估计的选择的全面讨论。我们目前的合成和真实世界的数据集强有力的实证证据来支持我们的要求。
translated by 谷歌翻译
在使用多模式贝叶斯后部分布时,马尔可夫链蒙特卡罗(MCMC)算法难以在模式之间移动,并且默认变分或基于模式的近似推动将低估后不确定性。并且,即使找到最重要的模式,难以评估后部的相对重量。在这里,我们提出了一种使用MCMC,变分或基于模式的模式的并行运行的方法,以便尽可能多地击中多种模式或分离的区域,然后使用贝叶斯堆叠来组合这些用于构建分布的加权平均值的可扩展方法。通过堆叠从多模式后分布的堆叠,最小化交叉验证预测误差的结果,并且代表了比变分推断更好的不确定度,但它不一定是相当于渐近的,以完全贝叶斯推断。我们呈现理论一致性,其中堆叠推断逼近来自未衰退的模型和非混合采样器的真实数据生成过程,预测性能优于完全贝叶斯推断,因此可以被视为祝福而不是模型拼写下的诅咒。我们展示了几个模型家庭的实际实施:潜在的Dirichlet分配,高斯过程回归,分层回归,马蹄素变量选择和神经网络。
translated by 谷歌翻译
我们提出了CKAM,周期性内核自适应大都市,该大都市结合了一个周期性的步骤尺寸方案,以控制探索和采样。我们表明,在精心设计的双峰分布中,现有的自适应大都市类型算法将无法融合到真正的后验分布。我们指出,这是因为自适应采样器使用链的过去历史估算局部/全局协方差结构,这将导致自适应算法被困在局部模式下。我们证明CKAM鼓励对后验分布进行探索,并使采样器能够从局部模式中逃脱,同时保持自适应方法的高性能。
translated by 谷歌翻译
近似贝叶斯计算(ABC)使复杂模型中的统计推断能够计算,其可能性难以计算,但易于模拟。 ABC通过接受/拒绝机制构建到后部分布的内核类型近似,该机制比较真实和模拟数据的摘要统计信息。为了避免对汇总统计数据的需求,我们直接将经验分布与通过分类获得的Kullback-Leibler(KL)发散估计值进行比较。特别是,我们将灵活的机器学习分类器混合在ABC中以自动化虚假/真实数据比较。我们考虑传统的接受/拒绝内核以及不需要ABC接受阈值的指数加权方案。我们的理论结果表明,我们的ABC后部分布集中在真实参数周围的速率取决于分类器的估计误差。我们得出了限制后形状的结果,并找到了一个正确缩放的指数内核,渐近常态持有。我们展示了我们对模拟示例以及在股票波动率估计的背景下的真实数据的有用性。
translated by 谷歌翻译
我们开发了一个探索漏洞利用马尔可夫链Monte Carlo算法($ \ OperatorName {ex ^ 2mcmc} $),它结合了多个全局提议和本地移动。所提出的方法是巨大的平行化和极其计算的高效。我们证明$ \ operatorname {ex ^ 2mcmc} $下的$ v $ v $ -unique几何ergodicity在现实条件下,并计算混合速率的显式界限,显示多个全局移动带来的改进。我们展示$ \ operatorname {ex ^ 2mcmc} $允许通过提出依赖全局移动的新方法进行微调剥削(本地移动)和探索(全球移动)。最后,我们开发了一个自适应方案,$ \ OperatorName {Flex ^ 2mcmc} $,它学习使用归一化流的全局动作的分布。我们说明了许多经典采样基准测试的$ \ OperatorName {ex ^ 2mccmc} $及其自适应版本的效率。我们还表明,这些算法提高了对基于能量的模型的抽样GAN的质量。
translated by 谷歌翻译
随机梯度马尔可夫链蒙特卡洛(SGMCMC)被认为是大型模型(例如贝叶斯神经网络)中贝叶斯推断的金标准。由于从业人员在这些模型中面临速度与准确性权衡,因此变异推理(VI)通常是可取的选择。不幸的是,VI对后部的分解和功能形式做出了有力的假设。在这项工作中,我们提出了一个新的非参数变分近似,该近似没有对后验功能形式进行假设,并允许从业者指定算法应尊重或断裂的确切依赖性。该方法依赖于在修改的能量函数上运行的新的langevin型算法,其中潜在变量的一部分是在马尔可夫链的早期迭代中平均的。这样,统计依赖性可以以受控的方式破裂,从而使链条混合更快。可以以“辍学”方式进一步修改该方案,从而导致更大的可扩展性。我们在CIFAR-10,SVHN和FMNIST上测试RESNET-20的计划。在所有情况下,与SG-MCMC和VI相比,我们都会发现收敛速度和/或最终精度的提高。
translated by 谷歌翻译
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be highly challenging, since the corresponding likelihood function is often intractable, and model simulation may be computationally burdensome or infeasible. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to base Bayesian inference directly on the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimising a transform of the approximate posterior that minimises a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
最大程度地减少具有随机梯度下降(SGD)的包容性kullback-leibler(KL)差异,因为其梯度被定义为后部的积分。最近,已经提出了多种方法运行SGD,并从马尔可夫链中获得了偏置梯度估计。本文通过建立混合速率和梯度方差,对这些方法进行了首次对这些方法的非反应收敛分析。为此,我们证明了这些方法 - 我们共同将其称为马尔可夫链得分上升(MCSA)方法can被视为马尔可夫链梯度下降框架的特殊情况。此外,通过利用这种新的理解,我们开发了一种新颖的MCSA方案,即Parallal MCSA(PMCSA),该方案在梯度方差上实现了更严格的结合。我们证明了这一改进的理论结果转化为卓越的经验表现。
translated by 谷歌翻译
我们呈现路径积分采样器〜(PIS),一种新型算法,用于从非正规化概率密度函数中绘制样本。 PIS建立在SCHR \“odinger桥问题上,旨在恢复鉴于其初始分布和终端分布的扩散过程的最可能演变。PIS从初始分布中抽取样品,然后通过SCHR \”传播样本“少剂桥到达终端分布。应用Girsanov定理,通过简单的先前扩散,我们将PIS制定为随机最佳控制问题,其运行成本是根据目标分布选择控制能量和终端成本。通过将控件建模为神经网络,我们建立了一种可以训练结束到底的采样算法。在使用子最优控制时,我们在Wassersein距离方面提供了PIS的采样质量的理论典范。此外,路径积分理论用于计算样本的重要性权重,以补偿由控制器的次级最优性和时间离散化引起的偏差。我们通过关于各种任务的其他启动采样方法进行了实验证明了PIS的优势。
translated by 谷歌翻译
利用启发式来评估收敛性和压缩马尔可夫链蒙特卡罗的输出可以在生产的经验逼近时是次优。通常,许多初始状态归因于“燃烧”并移除,而链条的其余部分是“变薄”,如果还需要压缩。在本文中,我们考虑回顾性地从样本路径中选择固定基数的状态的问题,使得由其经验分布提供的近似接近最佳。提出了一种基于核心稳定性差异的贪婪最小化的新方法,这适用于需要重压力的问题。理论结果保障方法的一致性及其有效性在常微分方程的参数推理的具体背景下证明了该效果。软件可在Python,R和Matlab中的Stein细化包中提供。
translated by 谷歌翻译