结合添加剂模型和神经网络可以通过同时通过可解释的结构化添加剂预测变量扩大统计回归的范围并扩展基于深度学习的方法。但是,将两种建模方法统一的现有尝试仅限于非常具体的组合,更重要的是涉及可识别性问题。结果,通常会丢失可解释性和稳定的估计。我们提出了一个通用框架,将结构化回归模型和深层神经网络组合到统一的网络体系结构中。为了克服不同模型零件之间固有的可识别性问题,我们构建了一个正交的单元,该细胞将深层神经网络投射到统计模型预测因子的正交补体中。这可以正确估计结构化模型零件,从而可以解释性。我们在数值实验中演示了该框架的功效,并在基准和现实世界应用中说明了其特殊优点。
translated by 谷歌翻译
在许多应用和研究领域,时间序列的概率预测是重要的事情。为了从概率预测中得出结论,我们必须确保用于近似真实预测分布的模型类足够表达。然而,模型本身的特征,例如其不确定性或特征结果关系并不重要。本文提出了自回旋转换模型(ATM),该模型类是受各种研究方向启发的模型类别,使用半参数分布假设和可解释的模型规范结合表达性分布预测。我们在理论上和通过几个模拟和真实的预测数据集上通过经验评估来证明ATM的属性。
translated by 谷歌翻译
在许多环境环境中的风险管理需要了解驱动极端事件的机制。量化这种风险的有用指标是响应变量的极端分位数,该变量是基于描述气候,生物圈和环境状态的预测变量的。通常,这些分位数位于可观察数据的范围之内,因此,为了估算,需要在回归框架内规范参数极值模型。在这种情况下,经典方法利用预测变量和响应变量之间的线性或加性关系,并在其预测能力或计算效率中受苦;此外,它们的简单性不太可能捕获导致极端野火创造的真正复杂结构。在本文中,我们提出了一个新的方法学框架,用于使用人工中性网络执行极端分位回归,该网络能够捕获复杂的非线性关系并很好地扩展到高维数据。神经网络的“黑匣子”性质意味着它们缺乏从业者通常会喜欢的可解释性的理想特征。因此,我们将线性和加法模型的各个方面与深度学习相结合,以创建可解释的神经网络,这些神经网络可用于统计推断,但保留了高预测准确性。为了补充这种方法,我们进一步提出了一个新颖的点过程模型,以克服与广义极值分布类别相关的有限的下端问题。我们的统一框架的功效在具有高维预测器集的美国野火数据上说明了,我们说明了基于线性和基于样条的回归技术的预测性能的大幅改进。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
对极端事件的风险评估需要准确估算超出历史观察范围的高分位数。当风险取决于观察到的预测因子的值时,回归技术用于在预测器空间中插值。我们提出的EQRN模型将来自神经网络和极值理论的工具结合到能够在存在复杂预测依赖性的情况下外推的方法中。神经网络自然可以在数据中融合其他结构。我们开发了EQRN的经常性版本,该版本能够在时间序列中捕获复杂的顺序依赖性。我们将这种方法应用于瑞士AARE集水区中洪水风险的预测。它利用从时空和时间上的多个协变量中利用信息,以提供对回报水平和超出概率的一日预测。该输出从传统的极值分析中补充了静态返回水平,并且预测能够适应不断变化的气候中经历的分配变化。我们的模型可以帮助当局更有效地管理洪水,并通过预警系统最大程度地减少其灾难性影响。
translated by 谷歌翻译
我们使用深层部分最小二乘(DPL)来估算单个股票收益的资产定价模型,该模型以灵活而动态的方式利用调理信息,同时将超额回报归因于一小部分统计风险因素。新颖的贡献是解决非线性因子结构,从而推进经验资产定价中深度学习的当前范式,该定价在假设高斯资产回报和因素的假设下使用线性随机折现因子。通过使用预测的最小二乘正方形来共同投影公司特征和资产回报到潜在因素的子空间,并使用深度学习从因子负载到资产回报中学习非线性图。捕获这种非线性风险因素结构的结果是通过线性风险因素暴露和相互作用效应来表征资产回报中的异常情况。因此,深度学习捕获异常值的众所周知的能力,在潜在因素结构中的角色和高阶项在因素风险溢价上的作用。从经验方面来说,我们实施了DPLS因子模型,并表现出比Lasso和Plain Vanilla深度学习模型表现出卓越的性能。此外,由于DPL的更简约的架构,我们的网络培训时间大大减少了。具体而言,在1989年12月至2018年1月的一段时间内使用Russell 1000指数中的3290资产,我们评估了我们的DPLS因子模型,并生成比深度学习大约1.2倍的信息比率。 DPLS解释了变化和定价错误,并确定了最突出的潜在因素和公司特征。
translated by 谷歌翻译
科学家经常使用观察时间序列数据来研究从气候变化到民间冲突再到大脑活动的复杂自然过程。但是对这些数据的回归分析通常假定简单的动态。深度学习的最新进展使从语音理解到核物理学再到竞争性游戏的复杂过程模型的表现实现了令人震惊的改进。但是深度学习通常不用于科学分析。在这里,我们通过证明可以使用深度学习,不仅可以模仿,而且可以分析复杂的过程,在保留可解释性的同时提供灵活的功能近似。我们的方法 - 连续时间反向逆转回归神经网络(CDRNN) - 放宽标准简化的假设(例如,线性,平稳性和同质性)对于许多自然系统来说是不可信的,并且可能会严重影响数据的解释。我们评估CDRNNS对人类语言处理,这是一个具有复杂连续动态的领域。我们证明了行为和神经影像数据中预测可能性的显着改善,我们表明CDRNN可以在探索性分析中灵活发现新型模式,在确认分析中对可能的混杂性提供强有力的控制,并打开否则就可以使用这些问题来进行研究,这些问题否则就可以使用这些问题来进行研究,而这些问题否则就可以使用这些问题进行研究,而这些问题否则就可以使用这些问题进行研究。观察数据。
translated by 谷歌翻译
回归模型用于各种应用,为来自不同领域的研究人员提供强大的科学工具。线性或简单的参数,模型通常不足以描述输入变量与响应之间的复杂关系。通过诸如神经网络的灵活方法可以更好地描述这种关系,但这导致不太可解释的模型和潜在的过度装备。或者,可以使用特定的参数非线性函数,但是这种功能的规范通常是复杂的。在本文中,我们介绍了一种灵活的施工方法,高度灵活的非线性参数回归模型。非线性特征是分层的,类似于深度学习,但对要考虑的可能类型的功能具有额外的灵活性。这种灵活性,与变量选择相结合,使我们能够找到一小部分重要特征,从而可以更具可解释的模型。在可能的功能的空间内,考虑了贝叶斯方法,基于它们的复杂性引入功能的前沿。采用遗传修改模式跳跃马尔可夫链蒙特卡罗算法来执行贝叶斯推理和估计模型平均的后验概率。在各种应用中,我们说明了我们的方法如何用于获得有意义的非线性模型。此外,我们将其预测性能与多个机器学习算法进行比较。
translated by 谷歌翻译
分位数回归是统计学习中的一个基本问题,这是由于需要量化预测中的不确定性或对多样化的人群建模而不过分减少的统计学习。例如,流行病学预测,成本估算和收入预测都可以准确地量化可能的值的范围。因此,在计量经济学,统计和机器学习的多年研究中,已经为这个问题开发了许多模型。而不是提出另一种(新的)算法用于分位数回归,而是采用元观点:我们研究用于汇总任意数量的有条件分位模型的方法,以提高准确性和鲁棒性。我们考虑加权合奏,其中权重不仅可能因单个模型,而且要多于分位数和特征值而变化。我们在本文中考虑的所有模型都可以使用现代深度学习工具包适合,因此可以广泛访问(从实现的角度)和可扩展。为了提高预测分位数的准确性(或等效地,预测间隔),我们开发了确保分位数保持单调排序的工具,并采用保形校准方法。可以使用这些,而无需对原始模型的原始库进行任何修改。我们还回顾了一些围绕分数聚集和相关评分规则的基本理论,并为该文献做出了一些新的结果(例如,在分类或等渗后回归只能提高加权间隔得分的事实)。最后,我们提供了来自两个不同基准存储库的34个数据集的广泛的经验比较套件。
translated by 谷歌翻译
功能响应对一组标量预测变量的回归可能是一项具有挑战性的任务,尤其是如果有大量预测因子,这些预测因子具有交互作用,或者这些预测因子与响应之间的关系是非线性的。在这项工作中,我们为此问题提出了一个解决方案:馈送前向神经网络(NN),旨在预测使用标量输入的功能响应。首先,我们将功能响应转换为有限维表示,然后构建了输出此表示形式的NN。我们提出了不同的目标功能来训练NN。所提出的模型适用于定期和不规则间隔的数据,还提供了多种方法来应用粗糙度惩罚以控制预测曲线的平滑度。实现这两个功能的困难在于可以反向传播的目标函数的定义。在我们的实验中,我们证明了我们的模型在多种情况下优于常规尺度回归模型,同时计算缩放的尺寸更好。
translated by 谷歌翻译
We consider the problem of dynamic pricing of a product in the presence of feature-dependent price sensitivity. Developing practical algorithms that can estimate price elasticities robustly, especially when information about no purchases (losses) is not available, to drive such automated pricing systems is a challenge faced by many industries. Based on the Poisson semi-parametric approach, we construct a flexible yet interpretable demand model where the price related part is parametric while the remaining (nuisance) part of the model is non-parametric and can be modeled via sophisticated machine learning (ML) techniques. The estimation of price-sensitivity parameters of this model via direct one-stage regression techniques may lead to biased estimates due to regularization. To address this concern, we propose a two-stage estimation methodology which makes the estimation of the price-sensitivity parameters robust to biases in the estimators of the nuisance parameters of the model. In the first-stage we construct estimators of observed purchases and prices given the feature vector using sophisticated ML estimators such as deep neural networks. Utilizing the estimators from the first-stage, in the second-stage we leverage a Bayesian dynamic generalized linear model to estimate the price-sensitivity parameters. We test the performance of the proposed estimation schemes on simulated and real sales transaction data from the Airline industry. Our numerical studies demonstrate that our proposed two-stage approach reduces the estimation error in price-sensitivity parameters from 25\% to 4\% in realistic simulation settings. The two-stage estimation techniques proposed in this work allows practitioners to leverage modern ML techniques to robustly estimate price-sensitivities while still maintaining interpretability and allowing ease of validation of its various constituent parts.
translated by 谷歌翻译
收购用于监督学习的标签可能很昂贵。为了提高神经网络回归的样本效率,我们研究了活跃的学习方法,这些方法可以适应地选择未标记的数据进行标记。我们提出了一个框架,用于从(与网络相关的)基础内核,内核转换和选择方法中构造此类方法。我们的框架涵盖了许多基于神经网络的高斯过程近似以及非乘式方法的现有贝叶斯方法。此外,我们建议用草图的有限宽度神经切线核代替常用的最后层特征,并将它们与一种新型的聚类方法结合在一起。为了评估不同的方法,我们引入了一个由15个大型表格回归数据集组成的开源基准。我们所提出的方法的表现优于我们的基准测试上的最新方法,缩放到大数据集,并在不调整网络体系结构或培训代码的情况下开箱即用。我们提供开源代码,包括所有内核,内核转换和选择方法的有效实现,并可用于复制我们的结果。
translated by 谷歌翻译
自回旋运动平均值(ARMA)模型是经典的,可以说是模型时间序列数据的最多研究的方法之一。它具有引人入胜的理论特性,并在从业者中广泛使用。最近的深度学习方法普及了经常性神经网络(RNN),尤其是长期记忆(LSTM)细胞,这些细胞已成为神经时间序列建模中最佳性能和最常见的构件之一。虽然对具有长期效果的时间序列数据或序列有利,但复杂的RNN细胞并不总是必须的,有时甚至可能不如更简单的复发方法。在这项工作中,我们介绍了ARMA细胞,这是一种在神经网络中的时间序列建模的更简单,模块化和有效的方法。该单元可以用于存在复发结构的任何神经网络体系结构中,并自然地使用矢量自动进程处理多元时间序列。我们还引入了Convarma细胞作为空间相关时间序列的自然继任者。我们的实验表明,所提出的方法在性能方面与流行替代方案具有竞争力,同时由于其简单性而变得更加强大和引人注目。
translated by 谷歌翻译
我们引入了一种新颖的方式,将增强功能与高斯工艺和混合效应模型相结合。首先,在高斯过程中先前的平均函数的零或线性假设可以放松,并以灵活的非参数方式分组随机效应模型,其次,第二个在大多数增强算法中做出的独立性假设。前者有利于预测准确性和避免模型错误。后者对于有效学习固定效应预测函数和获得概率预测很重要。我们提出的算法也是用于处理培养树木中高心电图分类变量的新颖解决方案。此外,我们提出了一个扩展名,该扩展是使用维奇亚近似为高斯工艺模型缩放到大数据的,该模型依靠新的结果进行协方差参数推断。与几个模拟和现实世界数据集的现有方法相比,我们获得了提高的预测准确性。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
像深神网络(DNN)这样的监督学习的现代方法通常隐含地假设观察到的反应在统计学上是独立的。相反,相关数据在现实生活中的大规模应用中很普遍,典型的相关来源包括空间,时间和聚类结构。这些相关性要么被DNN忽略,要么为特定用例开发了临时解决方案。我们建议使用混合模型框架来处理DNN中的相关数据。通过将相关结构的效果视为随机效应,混合模型能够避免过度拟合的参数估计,并最终产生更好的预测性能。混合模型和DNN结合的关键是使用高斯阴性对数似然(NLL)作为一种自然损耗函数,该函数用包括随机梯度下降(SGD)在内的DNN机械最小化。由于NLL不像标准DNN损失函数那样分解,因此SGD与NLL的使用呈现出一些理论和实施挑战,我们要解决。在各种模拟和真实数据集的各种相关方案中,我们称之为LMMNN的方法可以提高自然竞争对手的性能。我们的重点是回归设置和表格数据集,但我们还显示了一些分类结果。我们的代码可在https://github.com/gsimchoni/lmmnn上找到。
translated by 谷歌翻译
在翻译,旋转和形状下定义形状和形式作为等同类 - 也是规模的,我们将广义添加剂回归扩展到平面曲线和/或地标配置的形状/形式的模型。该模型尊重响应的所得到的商几何形状,采用平方的测量距离作为损耗函数和测地响应函数来将添加剂预测器映射到形状/形状空间。为了拟合模型,我们提出了一种riemannian $ l_2 $ -boosting算法,适用于可能大量可能的参数密集型模型术语,其还产生了自动模型选择。我们通过合适的张量 - 产品分解为形状/形状空间中的(甚至非线性)协变量提供新的直观可解释的可视化。所提出的框架的有用性在于1)的野生和驯养绵羊和2)细胞形式的分析中,在生物物理模型中产生的细胞形式,以及3)在具有反应形状和形式的现实模拟研究中,具有来自a的响应形状和形式在瓶轮廓上的数据集。
translated by 谷歌翻译
离散选择模型(DCM)需要先验了解实用程序功能,尤其是在个人之间的味道如何变化。公用事业错误指定可能会导致估计偏差,解释不准确和可预测性有限。在本文中,我们利用神经网络来学习味觉表示。我们的公式由两个模块组成:一个神经网络(味觉),该模块将口味参数(例如时间系数)作为个体特征的灵活函数;以及具有用专家知识定义的实用程序函数的多项式logit(MNL)模型。神经网络学到的口味参数被馈送到选择模型中,并将两个模块链接起来。我们的方法通过允许神经网络学习个体特征和替代属性之间的相互作用来扩展L-MNL模型(Sifringer等,2020)。此外,我们正式化并加强了可解释性条件 - 需要对分类级别的行为指标(例如,时间值,弹性)进行现实估计,这对于模型对于场景分析和政策决策至关重要。通过唯一的网络体系结构和参数转换,我们合并了先验知识,并指导神经网络在分类级别输出现实的行为指标。我们表明,TasteNet-MNL达到了基础真相模型的可预测性,并在合成数据上恢复了非线性味觉功能。它在个人层面上的估计值和选择弹性接近地面真相。在公开可用的瑞士梅特罗数据集中,TasteNet-MNL优于基准MNL和混合Logit模型的可预测性。它学习了人群中各种各样的味道变化,并提出了更高的平均值。
translated by 谷歌翻译
尽管对安全机器学习的重要性,但神经网络的不确定性量化远未解决。估计神经不确定性的最先进方法通常是混合的,将参数模型与显式或隐式(基于辍学的)合并结合。我们采取另一种途径,提出一种新颖的回归任务的不确定量化方法,纯粹是非参数的。从技术上讲,它通过基于辍学的子网分布来捕获梯级不确定性。这是通过一个新目标来实现的,这使得标签分布与模型分布之间的Wasserstein距离最小化。广泛的经验分析表明,在生产更准确和稳定的不确定度估计方面,Wasserstein丢失在香草测试数据以及在分类转移的情况下表现出最先进的方法。
translated by 谷歌翻译
由于在现实世界应用中广泛使用复杂的机器学习模型,解释模型预测变得至关重要。但是,这些模型通常是黑盒深神经网络,通过具有已知忠实限制的方法来解释事后。广义添加剂模型(GAM)是一种可解释的模型类别,通过分别学习每个功能的非线性形状函数来解决此限制,然后在顶部进行线性模型。但是,这些模型通常很难训练,需要许多参数,并且难以扩展。我们提出了一个全新的游戏亚家族,以利用形状函数的基础分解。在所有功能之间共享少数基础函数,并共同用于给定任务,因此使我们的模型比例更好地到具有高维功能的大规模数据,尤其是当功能稀疏时。我们提出了一种表示是神经基依据(NBM)的体系结构,该模型使用单个神经网络来学习这些基础。在各种表格和图像数据集上,我们证明,对于可解释的机器学习,NBMS是准确性,模型大小和吞吐量的最先进,并且可以轻松模拟所有高阶特征交互。源代码可在https://github.com/facebookresearch/nbm-pam上获得。
translated by 谷歌翻译