功能响应对一组标量预测变量的回归可能是一项具有挑战性的任务,尤其是如果有大量预测因子,这些预测因子具有交互作用,或者这些预测因子与响应之间的关系是非线性的。在这项工作中,我们为此问题提出了一个解决方案:馈送前向神经网络(NN),旨在预测使用标量输入的功能响应。首先,我们将功能响应转换为有限维表示,然后构建了输出此表示形式的NN。我们提出了不同的目标功能来训练NN。所提出的模型适用于定期和不规则间隔的数据,还提供了多种方法来应用粗糙度惩罚以控制预测曲线的平滑度。实现这两个功能的困难在于可以反向传播的目标函数的定义。在我们的实验中,我们证明了我们的模型在多种情况下优于常规尺度回归模型,同时计算缩放的尺寸更好。
translated by 谷歌翻译
We present a methodology for integrating functional data into deep densely connected feed-forward neural networks. The model is defined for scalar responses with multiple functional and scalar covariates. A by-product of the method is a set of dynamic functional weights that can be visualized during the optimization process. This visualization leads to greater interpretability of the relationship between the covariates and the response relative to conventional neural networks. The model is shown to perform well in a number of contexts including prediction of new data and recovery of the true underlying functional weights; these results were confirmed through real applications and simulation studies. A forthcoming R package is developed on top of a popular deep learning library (Keras) allowing for general use of the approach.
translated by 谷歌翻译
在许多纵向环境中,时间变化的协变量可能不会与响应同时测量,并且通常容易出现测量误差。幼稚的最后观察前向方法会产生估计偏差,现有的基于内核的方法的收敛速率缓慢和差异很大。为了应对这些挑战,我们提出了一种新的功能校准方法,以基于稀疏功能数据和测量误差的稀疏功能数据有效地学习纵向协变量。我们的方法来自功能性主成分分析,从观察到的异步和容易出现错误的协变量值中校准未观察到的同步协变量值,并广泛适用于异步纵向回归与时间传播或时间变化的系数。对于随时间不变系数的回归,我们的估计量是渐进的,无偏的,根-N一致的,并且渐近地正常。对于时变系数模型,我们的估计器具有最佳的变化系数收敛速率,而校准的渐近方差膨胀。在这两种情况下,我们的估计量都具有优于现有方法的渐近特性。拟议方法的可行性和可用性通过模拟和全国妇女健康研究的应用来验证,这是一项大规模的多站点纵向研究,对中年妇女健康。
translated by 谷歌翻译
在许多环境环境中的风险管理需要了解驱动极端事件的机制。量化这种风险的有用指标是响应变量的极端分位数,该变量是基于描述气候,生物圈和环境状态的预测变量的。通常,这些分位数位于可观察数据的范围之内,因此,为了估算,需要在回归框架内规范参数极值模型。在这种情况下,经典方法利用预测变量和响应变量之间的线性或加性关系,并在其预测能力或计算效率中受苦;此外,它们的简单性不太可能捕获导致极端野火创造的真正复杂结构。在本文中,我们提出了一个新的方法学框架,用于使用人工中性网络执行极端分位回归,该网络能够捕获复杂的非线性关系并很好地扩展到高维数据。神经网络的“黑匣子”性质意味着它们缺乏从业者通常会喜欢的可解释性的理想特征。因此,我们将线性和加法模型的各个方面与深度学习相结合,以创建可解释的神经网络,这些神经网络可用于统计推断,但保留了高预测准确性。为了补充这种方法,我们进一步提出了一个新颖的点过程模型,以克服与广义极值分布类别相关的有限的下端问题。我们的统一框架的功效在具有高维预测器集的美国野火数据上说明了,我们说明了基于线性和基于样条的回归技术的预测性能的大幅改进。
translated by 谷歌翻译
在翻译,旋转和形状下定义形状和形式作为等同类 - 也是规模的,我们将广义添加剂回归扩展到平面曲线和/或地标配置的形状/形式的模型。该模型尊重响应的所得到的商几何形状,采用平方的测量距离作为损耗函数和测地响应函数来将添加剂预测器映射到形状/形状空间。为了拟合模型,我们提出了一种riemannian $ l_2 $ -boosting算法,适用于可能大量可能的参数密集型模型术语,其还产生了自动模型选择。我们通过合适的张量 - 产品分解为形状/形状空间中的(甚至非线性)协变量提供新的直观可解释的可视化。所提出的框架的有用性在于1)的野生和驯养绵羊和2)细胞形式的分析中,在生物物理模型中产生的细胞形式,以及3)在具有反应形状和形式的现实模拟研究中,具有来自a的响应形状和形式在瓶轮廓上的数据集。
translated by 谷歌翻译
我们使用深层部分最小二乘(DPL)来估算单个股票收益的资产定价模型,该模型以灵活而动态的方式利用调理信息,同时将超额回报归因于一小部分统计风险因素。新颖的贡献是解决非线性因子结构,从而推进经验资产定价中深度学习的当前范式,该定价在假设高斯资产回报和因素的假设下使用线性随机折现因子。通过使用预测的最小二乘正方形来共同投影公司特征和资产回报到潜在因素的子空间,并使用深度学习从因子负载到资产回报中学习非线性图。捕获这种非线性风险因素结构的结果是通过线性风险因素暴露和相互作用效应来表征资产回报中的异常情况。因此,深度学习捕获异常值的众所周知的能力,在潜在因素结构中的角色和高阶项在因素风险溢价上的作用。从经验方面来说,我们实施了DPLS因子模型,并表现出比Lasso和Plain Vanilla深度学习模型表现出卓越的性能。此外,由于DPL的更简约的架构,我们的网络培训时间大大减少了。具体而言,在1989年12月至2018年1月的一段时间内使用Russell 1000指数中的3290资产,我们评估了我们的DPLS因子模型,并生成比深度学习大约1.2倍的信息比率。 DPLS解释了变化和定价错误,并确定了最突出的潜在因素和公司特征。
translated by 谷歌翻译
我们介绍了一类小说的预计方法,对实际线上的概率分布数据集进行统计分析,具有2-Wassersein指标。我们特别关注主成分分析(PCA)和回归。为了定义这些模型,我们通过将数据映射到合适的线性空间并使用度量投影运算符来限制Wassersein空间中的结果来利用与其弱利米结构密切相关的Wasserstein空间的表示。通过仔细选择切线,我们能够推出快速的经验方法,利用受约束的B样条近似。作为我们方法的副产品,我们还能够为PCA的PCA进行更快的例程来获得分布。通过仿真研究,我们将我们的方法与先前提出的方法进行比较,表明我们预计的PCA具有类似的性能,即使在拼盘下也是极其灵活的。研究了模型的若干理论性质,并证明了渐近一致性。讨论了两个真实世界应用于美国和风速预测的Covid-19死亡率。
translated by 谷歌翻译
Many scientific problems require identifying a small set of covariates that are associated with a target response and estimating their effects. Often, these effects are nonlinear and include interactions, so linear and additive methods can lead to poor estimation and variable selection. Unfortunately, methods that simultaneously express sparsity, nonlinearity, and interactions are computationally intractable -- with runtime at least quadratic in the number of covariates, and often worse. In the present work, we solve this computational bottleneck. We show that suitable interaction models have a kernel representation, namely there exists a "kernel trick" to perform variable selection and estimation in $O$(# covariates) time. Our resulting fit corresponds to a sparse orthogonal decomposition of the regression function in a Hilbert space (i.e., a functional ANOVA decomposition), where interaction effects represent all variation that cannot be explained by lower-order effects. On a variety of synthetic and real data sets, our approach outperforms existing methods used for large, high-dimensional data sets while remaining competitive (or being orders of magnitude faster) in runtime.
translated by 谷歌翻译
加速故障时间(AFT)模型假设故障时间与一组协变量之间的对数线性关系。与其他在危险功能上起作用的流行生存模型相反,协变量的影响直接对失败时间,其解释是直观的。未指定误差分布的半参数AFT模型对于与分布假设的不同是灵活且鲁棒的。由于理想的功能,这类模型被认为是对审查失败时间数据分析的流行COX模型的有希望的替代方法。但是,在这些AFT模型中,通常假定为平均值的线性预测指标。在建模平均值时,很少有研究解决了预测因素的非线性。在过去的几十年中,深度神经网络(DNNS)在各种领域都获得了杰出的成功。 DNN具有许多显着的优势,并且已被证明在解决非线性方面特别有用。通过利用此优势,我们建议使用GEHAN型损失拟合AFT模型中的DNN,并结合子采样技术。通过广泛的刺激研究研究了拟议DNN和基于等级的AFT模型(DEEPR-AFT)的有限样品特性。当预测因子是非线性时,DeepR-AFT在其参数或半摩米特里对应物上显示出卓越的性能。对于线性预测指标,当协变量的尺寸较大时,DEEPR-AFT的性能更好。使用两个真实数据集说明了所提出的DeepR-AFT,这证明了其优越性。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
与直接观察相比,使用功能数据的表示在随后的统计模型中可能更方便和有益。这些表示,在较低维空间中,从各个曲线中提取和压缩信息。功能数据分析中现有的表示学习方法通​​常使用线性映射,并平行于多元分析(例如功能主成分分析(FPCA))的线性映射。然而,功能作为无限维对物体,有时具有无法通过线性映射发现的非线性结构。给定多元功能数据,线性方法将更加不知所措。就此而言,本文提出了一种功能性非线性学习(Funnol)方法,以充分代表较低维度的功能数据。此外,我们合并了一个分类模型,以丰富表示在预测曲线标签中的能力。因此,Funnol的表示形式可用于曲线重建和分类。此外,我们已经赋予了提出的模型,以解决缺失的观察问题以及进一步的观测。所得的表示对观测值的鲁棒性是在局部受到不可控制的随机噪声打扰的。我们将提出的Funnol方法应用于几个真实的数据集,并表明Funnol可以比FPCA获得更好的分类,尤其是在多元功能数据设置中。仿真研究表明,Funnol可提供令人满意的曲线分类和重建,而不管数据稀少度如何。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
最近有一项激烈的活动在嵌入非常高维和非线性数据结构的嵌入中,其中大部分在数据科学和机器学习文献中。我们分四部分调查这项活动。在第一部分中,我们涵盖了非线性方法,例如主曲线,多维缩放,局部线性方法,ISOMAP,基于图形的方法和扩散映射,基于内核的方法和随机投影。第二部分与拓扑嵌入方法有关,特别是将拓扑特性映射到持久图和映射器算法中。具有巨大增长的另一种类型的数据集是非常高维网络数据。第三部分中考虑的任务是如何将此类数据嵌入中等维度的向量空间中,以使数据适合传统技术,例如群集和分类技术。可以说,这是算法机器学习方法与统计建模(所谓的随机块建模)之间的对比度。在论文中,我们讨论了两种方法的利弊。调查的最后一部分涉及嵌入$ \ mathbb {r}^ 2 $,即可视化中。提出了三种方法:基于第一部分,第二和第三部分中的方法,$ t $ -sne,UMAP和大节。在两个模拟数据集上进行了说明和比较。一个由嘈杂的ranunculoid曲线组成的三胞胎,另一个由随机块模型和两种类型的节点产生的复杂性的网络组成。
translated by 谷歌翻译
这篇综述的目的是将读者介绍到图表内,以将其应用于化学信息学中的分类问题。图内核是使我们能够推断分子的化学特性的功能,可以帮助您完成诸如寻找适合药物设计的化合物等任务。内核方法的使用只是一种特殊的两种方式量化了图之间的相似性。我们将讨论限制在这种方法上,尽管近年来已经出现了流行的替代方法,但最著名的是图形神经网络。
translated by 谷歌翻译
神经网络中的大多数工作都集中在给定一组协变量的情况下估计连续响应变量的条件平均值。在本文中,我们考虑使用神经网络估算有条件的分布函数,以审查和未经审查的数据。该算法建立在与时间依赖性协变量有关COX回归的数据结构上。在不施加任何模型假设的情况下,我们考虑了基于条件危险函数是唯一未知的非参数参数的损失函数,可以应用不明显的优化方法。通过仿真研究,我们显示了所提出的方法具有理想的性能,而部分可能性方法和传统的神经网络具有$ l_2 $损失产量的偏向估计,当模型假设违反。我们进一步用几个现实世界数据集说明了提出的方法。提出的方法的实现可在https://github.com/bingqing0729/nncde上获得。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
许多现代数据集,从神经影像和地统计数据等领域都以张量数据的随机样本的形式来说,这可以被理解为对光滑的多维随机功能的嘈杂观察。来自功能数据分析的大多数传统技术被维度的诅咒困扰,并且随着域的尺寸增加而迅速变得棘手。在本文中,我们提出了一种学习从多维功能数据样本的持续陈述的框架,这些功能是免受诅咒的几种表现形式的。这些表示由一组可分离的基函数构造,该函数被定义为最佳地适应数据。我们表明,通过仔细定义的数据的仔细定义的减少转换的张测仪分解可以有效地解决所得到的估计问题。使用基于差分运算符的惩罚,并入粗糙的正则化。也建立了相关的理论性质。在模拟研究中证明了我们对竞争方法的方法的优点。我们在神经影像动物中得出真正的数据应用。
translated by 谷歌翻译
结合添加剂模型和神经网络可以通过同时通过可解释的结构化添加剂预测变量扩大统计回归的范围并扩展基于深度学习的方法。但是,将两种建模方法统一的现有尝试仅限于非常具体的组合,更重要的是涉及可识别性问题。结果,通常会丢失可解释性和稳定的估计。我们提出了一个通用框架,将结构化回归模型和深层神经网络组合到统一的网络体系结构中。为了克服不同模型零件之间固有的可识别性问题,我们构建了一个正交的单元,该细胞将深层神经网络投射到统计模型预测因子的正交补体中。这可以正确估计结构化模型零件,从而可以解释性。我们在数值实验中演示了该框架的功效,并在基准和现实世界应用中说明了其特殊优点。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译