在许多环境环境中的风险管理需要了解驱动极端事件的机制。量化这种风险的有用指标是响应变量的极端分位数,该变量是基于描述气候,生物圈和环境状态的预测变量的。通常,这些分位数位于可观察数据的范围之内,因此,为了估算,需要在回归框架内规范参数极值模型。在这种情况下,经典方法利用预测变量和响应变量之间的线性或加性关系,并在其预测能力或计算效率中受苦;此外,它们的简单性不太可能捕获导致极端野火创造的真正复杂结构。在本文中,我们提出了一个新的方法学框架,用于使用人工中性网络执行极端分位回归,该网络能够捕获复杂的非线性关系并很好地扩展到高维数据。神经网络的“黑匣子”性质意味着它们缺乏从业者通常会喜欢的可解释性的理想特征。因此,我们将线性和加法模型的各个方面与深度学习相结合,以创建可解释的神经网络,这些神经网络可用于统计推断,但保留了高预测准确性。为了补充这种方法,我们进一步提出了一个新颖的点过程模型,以克服与广义极值分布类别相关的有限的下端问题。我们的统一框架的功效在具有高维预测器集的美国野火数据上说明了,我们说明了基于线性和基于样条的回归技术的预测性能的大幅改进。
translated by 谷歌翻译
对极端事件的风险评估需要准确估算超出历史观察范围的高分位数。当风险取决于观察到的预测因子的值时,回归技术用于在预测器空间中插值。我们提出的EQRN模型将来自神经网络和极值理论的工具结合到能够在存在复杂预测依赖性的情况下外推的方法中。神经网络自然可以在数据中融合其他结构。我们开发了EQRN的经常性版本,该版本能够在时间序列中捕获复杂的顺序依赖性。我们将这种方法应用于瑞士AARE集水区中洪水风险的预测。它利用从时空和时间上的多个协变量中利用信息,以提供对回报水平和超出概率的一日预测。该输出从传统的极值分析中补充了静态返回水平,并且预测能够适应不断变化的气候中经历的分配变化。我们的模型可以帮助当局更有效地管理洪水,并通过预警系统最大程度地减少其灾难性影响。
translated by 谷歌翻译
神经网络最近显示出对无似然推理的希望,从而为经典方法提供了魔力的速度。但是,当从独立重复估计参数时,当前的实现是次优的。在本文中,我们使用决策理论框架来争辩说,如果这些模型的模拟很简单,则理想地放置了置换不变的神经网络,可用于为任意模型构造贝叶斯估计器。我们说明了这些估计量在传统空间模型以及高度参数化的空间发射模型上的潜力,并表明它们在其网络设计中不适当地说明复制的神经估计量相当大。同时,它们比基于传统可能性的估计量具有很高的竞争力和更快的速度。我们将估计量应用于红海中海面温度的空间分析,在训练之后,我们获得参数估计值,并通过引导采样对估计值进行不确定性定量,从一秒钟的数百个空间场中获取。
translated by 谷歌翻译
结合添加剂模型和神经网络可以通过同时通过可解释的结构化添加剂预测变量扩大统计回归的范围并扩展基于深度学习的方法。但是,将两种建模方法统一的现有尝试仅限于非常具体的组合,更重要的是涉及可识别性问题。结果,通常会丢失可解释性和稳定的估计。我们提出了一个通用框架,将结构化回归模型和深层神经网络组合到统一的网络体系结构中。为了克服不同模型零件之间固有的可识别性问题,我们构建了一个正交的单元,该细胞将深层神经网络投射到统计模型预测因子的正交补体中。这可以正确估计结构化模型零件,从而可以解释性。我们在数值实验中演示了该框架的功效,并在基准和现实世界应用中说明了其特殊优点。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
我们提出了一种基于配对构造的模型组件的广义添加剂模型,并以预测为主要目的。该模型组件的设计使我们的模型可以捕获响应协变量之间关系中潜在的复杂相互作用效应。此外,我们的模型不需要连续协变量的离散化,因此适用于许多此类协变量的问题。此外,我们设计了一种受梯度增强启发的拟合算法,以及通过对模型空间和近似值的限制来加快时间对比计算的限制,用于模型选择和模型选择的有效程序。除了我们的模型在更高维度中成为现实的选择绝对必要外,这些技术还可以作为设计有效模型选择算法的其他类型的Copula回归模型的基础。我们已经在模拟研究中探索了我们方法的特征,特别是将其与自然替代方案进行比较,例如逻辑回归,经典增强模型和受到惩罚的逻辑回归。我们还展示了我们在威斯康星州乳腺癌数据集和波士顿住房数据集上的方法。结果表明,即使离散协变量的比例很高,我们的方法的预测性能要么比其他方法更好或可比其他方法媲美。
translated by 谷歌翻译
有效的决策需要了解预测中固有的不确定性。在回归中,这种不确定性可以通过各种方法估算;然而,许多这些方法对调谐进行费力,产生过度自确性的不确定性间隔,或缺乏敏锐度(给予不精确的间隔)。我们通过提出一种通过定义具有两个不同损失功能的神经网络来捕获回归中的预测分布的新方法来解决这些挑战。具体地,一个网络近似于累积分布函数,第二网络近似于其逆。我们将此方法称为合作网络(CN)。理论分析表明,优化的固定点处于理想化的解决方案,并且该方法是渐近的与地面真理分布一致。凭经验,学习是简单且强大的。我们基准CN对两个合成和六个现实世界数据集的几种常见方法,包括预测来自电子健康记录的糖尿病患者的A1C值,其中不确定是至关重要的。在合成数据中,所提出的方法与基本上匹配地面真理。在真实世界数据集中,CN提高了许多性能度量的结果,包括对数似然估计,平均误差,覆盖估计和预测间隔宽度。
translated by 谷歌翻译
功能响应对一组标量预测变量的回归可能是一项具有挑战性的任务,尤其是如果有大量预测因子,这些预测因子具有交互作用,或者这些预测因子与响应之间的关系是非线性的。在这项工作中,我们为此问题提出了一个解决方案:馈送前向神经网络(NN),旨在预测使用标量输入的功能响应。首先,我们将功能响应转换为有限维表示,然后构建了输出此表示形式的NN。我们提出了不同的目标功能来训练NN。所提出的模型适用于定期和不规则间隔的数据,还提供了多种方法来应用粗糙度惩罚以控制预测曲线的平滑度。实现这两个功能的困难在于可以反向传播的目标函数的定义。在我们的实验中,我们证明了我们的模型在多种情况下优于常规尺度回归模型,同时计算缩放的尺寸更好。
translated by 谷歌翻译
我们使用深层部分最小二乘(DPL)来估算单个股票收益的资产定价模型,该模型以灵活而动态的方式利用调理信息,同时将超额回报归因于一小部分统计风险因素。新颖的贡献是解决非线性因子结构,从而推进经验资产定价中深度学习的当前范式,该定价在假设高斯资产回报和因素的假设下使用线性随机折现因子。通过使用预测的最小二乘正方形来共同投影公司特征和资产回报到潜在因素的子空间,并使用深度学习从因子负载到资产回报中学习非线性图。捕获这种非线性风险因素结构的结果是通过线性风险因素暴露和相互作用效应来表征资产回报中的异常情况。因此,深度学习捕获异常值的众所周知的能力,在潜在因素结构中的角色和高阶项在因素风险溢价上的作用。从经验方面来说,我们实施了DPLS因子模型,并表现出比Lasso和Plain Vanilla深度学习模型表现出卓越的性能。此外,由于DPL的更简约的架构,我们的网络培训时间大大减少了。具体而言,在1989年12月至2018年1月的一段时间内使用Russell 1000指数中的3290资产,我们评估了我们的DPLS因子模型,并生成比深度学习大约1.2倍的信息比率。 DPLS解释了变化和定价错误,并确定了最突出的潜在因素和公司特征。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
学习条件密度和识别影响整个分布的因素是数据驱动应用程序中的重要任务。常规方法主要与摘要统计数据合作,因此不足以进行全面的调查。最近,关于功能回归方法的发展,将密度曲线作为功能结果建模。开发此类模型的一个主要挑战在于非阴性的固有约束和密度结果功能空间的单位积分。为了克服这个基本问题,我们建议Wasserstein分销学习(WDL),这是一个柔性在尺度回归建模框架,始于Wasserstein距离$ W_2 $,作为密度结果空间的适当指标。然后,我们将半参数条件高斯混合模型(SCGMM)作为模型类$ \ mathfrak {f} \ otimes \ Mathcal {t} $作为模型类$ \ mathfrak {scgmm)介绍。生成的度量空间$(\ Mathfrak {f} \ otimes \ Mathcal {t},W_2)$满足所需的约束,并提供密集且封闭的功能子空间。为了拟合所提出的模型,我们基于增强树的大量最小化优化进一步开发了有效的算法。与以前的文献中的方法相比,WDL更好地表征了条件密度的非线性依赖性及其得出的摘要统计。我们通过模拟和现实世界应用来证明WDL框架的有效性。
translated by 谷歌翻译
在智能电网和负载平衡的背景下,每日峰值负荷预测已成为能源行业利益相关者的关键活动。对峰值幅度和时序的理解对于实现峰值剃须等智能电网策略至关重要。本文提出的建模方法利用了高分辨率和低分辨率信息来预测每日峰值需求规模和时序。由此产生的多分辨率建模框架可以适应不同的模型类。本文的主要贡献是一般性和正式介绍多分辨率建模方法,b)关于通过广义添加剂模型和神经网络和C)实验结果的不同决议的建模方法的讨论英国电力市场。结果证实,建议的建模方法的预测性能与低分辨率和高分辨率替代品具有竞争力。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
预测组合在预测社区中蓬勃发展,近年来,已经成为预测研究和活动主流的一部分。现在,由单个(目标)系列产生的多个预测组合通过整合来自不同来源收集的信息,从而提高准确性,从而减轻了识别单个“最佳”预测的风险。组合方案已从没有估计的简单组合方法演变为涉及时间变化的权重,非线性组合,组件之间的相关性和交叉学习的复杂方法。它们包括结合点预测和结合概率预测。本文提供了有关预测组合的广泛文献的最新评论,并参考可用的开源软件实施。我们讨论了各种方法的潜在和局限性,并突出了这些思想如何随着时间的推移而发展。还调查了有关预测组合实用性的一些重要问题。最后,我们以当前的研究差距和未来研究的潜在见解得出结论。
translated by 谷歌翻译
Network-based analyses of dynamical systems have become increasingly popular in climate science. Here we address network construction from a statistical perspective and highlight the often ignored fact that the calculated correlation values are only empirical estimates. To measure spurious behaviour as deviation from a ground truth network, we simulate time-dependent isotropic random fields on the sphere and apply common network construction techniques. We find several ways in which the uncertainty stemming from the estimation procedure has major impact on network characteristics. When the data has locally coherent correlation structure, spurious link bundle teleconnections and spurious high-degree clusters have to be expected. Anisotropic estimation variance can also induce severe biases into empirical networks. We validate our findings with ERA5 reanalysis data. Moreover we explain why commonly applied resampling procedures are inappropriate for significance evaluation and propose a statistically more meaningful ensemble construction framework. By communicating which difficulties arise in estimation from scarce data and by presenting which design decisions increase robustness, we hope to contribute to more reliable climate network construction in the future.
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
在过去的几十年中,风产能的增长表明,风能可以促进世界许多地区的能源过渡。对于模型的高度可变和复杂,对风能的时空变化和相关的不确定性的定量与能源计划者高度相关。机器学习已成为执行风速和功率预测的流行工具。但是,现有方法有几个局限性。其中包括(i)在风速数据中不足以考虑时空相关性,(ii)缺乏量化风速预测不确定性及其对风能估算的不确定性的现有方法,以及(iii)焦点在少于小时的频率上。为了克服这些局限性,我们引入了一个框架,以从不规则分布的风速测量值中的常规网格上重建时空场。将数据分解为时间引用的基础函数及其相应的空间分布系数后,后者是使用极端学习机对空间建模的。然后,对模型和预测不确定性的估计及其在风速转化为风能后的传播的估计值,然后将提供对数据分布模式的任何假设。该方法适用于研究瑞士100米轮毂高度的250 x 250平方米的小时风能潜力,为该国提供了其类型的第一个数据集。潜在的风力发电与风力涡轮机安装的可用区域相结合,以估算瑞士风力发电的技术潜力。此处介绍的风力估算代表了计划人员的重要意见,以支持风力发电增加的未来能源系统的设计。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
了解极端事件及其可能性是研究气候变化影响,风险评估,适应和保护生物的关键。在这项工作中,我们开发了一种方法来构建极端热浪的预测模型。这些模型基于卷积神经网络,对极长的8,000年气候模型输出进行了培训。由于极端事件之间的关系本质上是概率的,因此我们强调概率预测和验证。我们证明,深度神经网络适用于法国持续持续14天的热浪,快速动态驱动器提前15天(500 hpa地球电位高度场),并且在慢速较长的交货时间内,慢速物理时间驱动器(土壤水分)。该方法很容易实现和通用。我们发现,深神经网络选择了与北半球波数字3模式相关的极端热浪。我们发现,当将2米温度场添加到500 HPA地球电位高度和土壤水分场中时,2米温度场不包含任何新的有用统计信息。主要的科学信息是,训练深层神经网络预测极端热浪的发生是在严重缺乏数据的情况下发生的。我们建议大多数其他应用在大规模的大气和气候现象中都是如此。我们讨论了处理缺乏数据制度的观点,例如罕见的事件模拟,以及转移学习如何在后一种任务中发挥作用。
translated by 谷歌翻译