For solving a broad class of nonconvex programming problems on an unbounded constraint set, we provide a self-adaptive step-size strategy that does not include line-search techniques and establishes the convergence of a generic approach under mild assumptions. Specifically, the objective function may not satisfy the convexity condition. Unlike descent line-search algorithms, it does not need a known Lipschitz constant to figure out how big the first step should be. The crucial feature of this process is the steady reduction of the step size until a certain condition is fulfilled. In particular, it can provide a new gradient projection approach to optimization problems with an unbounded constrained set. The correctness of the proposed method is verified by preliminary results from some computational examples. To demonstrate the effectiveness of the proposed technique for large-scale problems, we apply it to some experiments on machine learning, such as supervised feature selection, multi-variable logistic regressions and neural networks for classification.
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
近年来,已经开发出各种基于梯度的方法来解决机器学习和计算机视觉地区的双层优化(BLO)问题。然而,这些现有方法的理论正确性和实际有效性总是依赖于某些限制性条件(例如,下层单身,LLS),这在现实世界中可能很难满足。此外,以前的文献仅证明了基于其特定的迭代策略的理论结果,因此缺乏一般的配方,以统一分析不同梯度的BLO的收敛行为。在这项工作中,我们从乐观的双级视点制定BLOS,并建立一个名为Bi-Level血液血统聚合(BDA)的新梯度的算法框架,以部分地解决上述问题。具体而言,BDA提供模块化结构,以分级地聚合上层和下层子问题以生成我们的双级迭代动态。从理论上讲,我们建立了一般会聚分析模板,并导出了一种新的证据方法,以研究基于梯度的BLO方法的基本理论特性。此外,这项工作系统地探讨了BDA在不同优化场景中的收敛行为,即,考虑从解决近似子问题返回的各种解决方案质量(即,全局/本地/静止解决方案)。广泛的实验证明了我们的理论结果,并展示了所提出的超参数优化和元学习任务算法的优越性。源代码可在https://github.com/vis-opt-group/bda中获得。
translated by 谷歌翻译
我们引入了一种降低尺寸的二阶方法(DRSOM),用于凸和非凸的不受约束优化。在类似信任区域的框架下,我们的方法保留了二阶方法的收敛性,同时仅在两个方向上使用Hessian-Vector产品。此外,计算开销仍然与一阶相当,例如梯度下降方法。我们证明该方法的复杂性为$ O(\ epsilon^{ - 3/2})$,以满足子空间中的一阶和二阶条件。DRSOM的适用性和性能通过逻辑回归,$ L_2-L_P $最小化,传感器网络定位和神经网络培训的各种计算实验展示。对于神经网络,我们的初步实施似乎在训练准确性和迭代复杂性方面与包括SGD和ADAM在内的最先进的一阶方法获得了计算优势。
translated by 谷歌翻译
我们提出了一个基于一般学习的框架,用于解决非平滑和非凸图像重建问题。我们将正则函数建模为$ l_ {2,1} $ norm的组成,并将平滑但非convex功能映射参数化为深卷积神经网络。我们通过利用Nesterov的平滑技术和残留学习的概念来开发一种可证明的趋同的下降型算法来解决非平滑非概念最小化问题,并学习网络参数,以使算法的输出与培训数据中的参考匹配。我们的方法用途广泛,因为人们可以将各种现代网络结构用于正规化,而所得网络继承了算法的保证收敛性。我们还表明,所提出的网络是参数有效的,其性能与实践中各种图像重建问题中的最新方法相比有利。
translated by 谷歌翻译
基于梯度的高参数调整的优化方法可确保理论收敛到固定解决方案时,对于固定的上层变量值,双光线程序的下层级别强烈凸(LLSC)和平滑(LLS)。对于在许多机器学习算法中调整超参数引起的双重程序,不满足这种情况。在这项工作中,我们开发了一种基于不精确度(VF-IDCA)的基于依次收敛函数函数算法。我们表明,该算法从一系列的超级参数调整应用程序中实现了无LLSC和LLS假设的固定解决方案。我们的广泛实验证实了我们的理论发现,并表明,当应用于调子超参数时,提出的VF-IDCA会产生较高的性能。
translated by 谷歌翻译
最近的一些实证研究表明,重要的机器学习任务,例如训练深神网络,表现出低级别的结构,其中损耗函数仅在输入空间的几个方向上差异很大。在本文中,我们利用这种低级结构来降低基于规范梯度的方法(例如梯度下降(GD))的高计算成本。我们提出的\ emph {低率梯度下降}(lrgd)算法找到了$ \ epsilon $ - approximate的固定点$ p $ - 维功能,首先要识别$ r \ r \ leq p $重要的方向,然后估算真实的方向每次迭代的$ p $维梯度仅通过计算$ r $方向来计算定向衍生物。我们确定强烈凸和非convex目标函数的LRGD的“定向甲骨文复杂性”是$ \ Mathcal {o}(r \ log(1/\ epsilon) + rp) + rp)$ and $ \ Mathcal {o}(R /\ epsilon^2 + rp)$。当$ r \ ll p $时,这些复杂性小于$ \ mathcal {o}的已知复杂性(p \ log(1/\ epsilon))$和$ \ mathcal {o}(p/\ epsilon^2) {\ gd}的$分别在强凸和非凸口设置中。因此,LRGD显着降低了基于梯度的方法的计算成本,以实现足够低级别的功能。在分析过程中,我们还正式定义和表征精确且近似级别函数的类别。
translated by 谷歌翻译
我们介绍和分析结构化的随机零订单下降(S-SZD),这是一种有限的差异方法,该方法在一组$ l \ leq d $正交方向上近似于随机梯度,其中$ d $是环境空间的维度。这些方向是随机选择的,并且可能在每个步骤中发生变化。对于平滑的凸功能,我们几乎可以确保迭代的收敛性和对$ o(d/l k^{ - c})$的功能值的收敛速率,每$ c <1/2 $,这是任意关闭的就迭代次数而言,是随机梯度下降(SGD)。我们的界限还显示了使用$ l $多个方向而不是一个方向的好处。对于满足polyak-{\ l} ojasiewicz条件的非convex函数,我们在这种假设下建立了随机Zeroth Order Order Order算法的第一个收敛速率。我们在数值模拟中证实了我们的理论发现,在数值模拟中,满足假设以及对超参数优化的现实世界问题,观察到S-SZD具有很好的实践性能。
translated by 谷歌翻译
我们研究了具有有限和结构的平滑非凸化优化问题的随机重新洗脱(RR)方法。虽然该方法在诸如神经网络的训练之类的实践中广泛利用,但其会聚行为仅在几个有限的环境中被理解。在本文中,在众所周知的Kurdyka-LojasiewiCz(KL)不等式下,我们建立了具有适当递减步长尺寸的RR的强极限点收敛结果,即,RR产生的整个迭代序列是会聚并会聚到单个静止点几乎肯定的感觉。 In addition, we derive the corresponding rate of convergence, depending on the KL exponent and the suitably selected diminishing step sizes.当KL指数在$ [0,\ FRAC12] $以$ [0,\ FRAC12] $时,收敛率以$ \ mathcal {o}(t ^ { - 1})$的速率计算,以$ t $ counting迭代号。当KL指数属于$(\ FRAC12,1)$时,我们的派生收敛速率是FORM $ \ MATHCAL {O}(T ^ { - Q})$,$ Q \ IN(0,1)$取决于在KL指数上。基于标准的KL不等式的收敛分析框架仅适用于具有某种阶段性的算法。我们对基于KL不等式的步长尺寸减少的非下降RR方法进行了新的收敛性分析,这概括了标准KL框架。我们总结了我们在非正式分析框架中的主要步骤和核心思想,这些框架是独立的兴趣。作为本框架的直接应用,我们还建立了类似的强极限点收敛结果,为重组的近端点法。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
本文认为,使用一组不平等凸期望约束最小化凸期望函数的问题。我们提出了一种可计算的随机近似类型算法,即乘数的随机线性近端方法来解决此凸随机优化问题。该算法可以粗略地看作是随机近似和传统的乘数近端方法的混合体。在轻度条件下,我们表明该算法表现出$ o(k^{ - 1/2})$预期的收敛速率,如果正确选择了算法中的参数,则客观降低和约束违规率,其中$ k $表示$ k $表示的数量表示迭代。此外,我们表明,算法具有$ o(\ log(k)k^{ - 1/2})$约束违规和$ o(\ log^{3/2}(k)k)^{ - 1/2})$目标结合。一些初步的数值结果证明了所提出的算法的性能。
translated by 谷歌翻译
非平滑的有限和最小化是机器学习中的一个基本问题。本文开发了一种具有随机重新洗牌的分布式随机近端梯度算法,以解决随着时变多代理网络的有限和最小化。目标函数是可分辨率凸起功能的总和和非平滑的正则化。网络中的每个代理通过本地信息更新具有恒定步长大小的局部变量,并协作以寻求最佳解决方案。我们证明了所提出的算法产生的局部变量估计实现共识,并且与$ \ mathcal {o}(\ frac {1} {t} + \ frac {1} {\SQRT {T}})$收敛率。此外,本文通过选择足够的阶梯尺寸,可以任意地小的目标函数的稳态误差。最后,提供了一些比较仿真来验证所提出的算法的收敛性能。
translated by 谷歌翻译
Iterative regularization is a classic idea in regularization theory, that has recently become popular in machine learning. On the one hand, it allows to design efficient algorithms controlling at the same time numerical and statistical accuracy. On the other hand it allows to shed light on the learning curves observed while training neural networks. In this paper, we focus on iterative regularization in the context of classification. After contrasting this setting with that of regression and inverse problems, we develop an iterative regularization approach based on the use of the hinge loss function. More precisely we consider a diagonal approach for a family of algorithms for which we prove convergence as well as rates of convergence. Our approach compares favorably with other alternatives, as confirmed also in numerical simulations.
translated by 谷歌翻译
我们研究了一类算法,用于在内部级别物镜强烈凸起时求解随机和确定性设置中的彼此优化问题。具体地,我们考虑基于不精确的隐含区分的算法,并且我们利用热门开始策略来摊销精确梯度的估计。然后,我们介绍了一个统一的理论框架,受到奇异的扰动系统(Habets,1974)的研究来分析这种摊销算法。通过使用此框架,我们的分析显示了匹配可以访问梯度无偏见估计的Oracle方法的计算复杂度的算法,从而优于彼此优化的许多现有结果。我们在合成实验中说明了这些发现,并展示了这些算法对涉及几千个变量的超参数优化实验的效率。
translated by 谷歌翻译
Federated learning has shown its advances recently but is still facing many challenges, such as how algorithms save communication resources and reduce computational costs, and whether they converge. To address these critical issues, we propose a hybrid federated learning algorithm (FedGiA) that combines the gradient descent and the inexact alternating direction method of multipliers. The proposed algorithm is more communication- and computation-efficient than several state-of-the-art algorithms theoretically and numerically. Moreover, it also converges globally under mild conditions.
translated by 谷歌翻译
广义自我符合是许多重要学习问题的目标功能中存在的关键属性。我们建立了一个简单的Frank-Wolfe变体的收敛速率,该变体使用开环步数策略$ \ gamma_t = 2/(t+2)$,获得了$ \ Mathcal {o}(1/t)$收敛率对于这类功能,就原始差距和弗兰克 - 沃尔夫差距而言,$ t $是迭代计数。这避免了使用二阶信息或估计以前工作的局部平滑度参数的需求。我们还显示了各种常见病例的收敛速率的提高,例如,当所考虑的可行区域均匀地凸或多面体时。
translated by 谷歌翻译
在本文中,我们研究了平稳的随机多级组成优化问题,其中目标函数是$ T $函数的嵌套组成。我们假设通过随机的一阶Oracle访问函数及其渐变的噪声评估。为了解决这类问题,我们提出了两个使用移动平均随机估计的两种算法,并分析了它们对问题的$ \ epsilon $ -stationary的趋同。我们表明,第一算法,它是\ Cite {gharuswan20}的泛化到$ t $ letch案例,可以通过使用mini-实现$ \ mathcal {o}(1 / \ epsilon ^ 6)$的样本复杂性每次迭代中的样品批次。通过使用函数值的线性化随机估计修改该算法,我们将样本复杂性提高到$ \ mathcal {o}(1 / \ epsilon ^ 4)$。 {\ Color {Black}此修改不仅可以消除在每次迭代中具有迷你样本的要求,还使算法无参数和易于实现}。据我们所知,这是第一次为(UN)约束的多级设置设计的在线算法,在标准假设下获得平滑单级设置的相同样本复杂度(无偏见和界限第二矩)在随机第一阶Oracle上。
translated by 谷歌翻译
二重优化(BO)可用于解决各种重要的机器学习问题,包括但不限于超参数优化,元学习,持续学习和增强学习。常规的BO方法需要通过与隐式分化的低级优化过程进行区分,这需要与Hessian矩阵相关的昂贵计算。最近,人们一直在寻求BO的一阶方法,但是迄今为止提出的方法对于大规模的深度学习应用程序往往是复杂且不切实际的。在这项工作中,我们提出了一种简单的一阶BO算法,仅取决于一阶梯度信息,不需要隐含的区别,并且对于大规模的非凸函数而言是实用和有效的。我们为提出的方法提供了非注重方法分析非凸目标的固定点,并提出了表明其出色实践绩效的经验结果。
translated by 谷歌翻译
由于迭代元素的结构诱导属性,尤其是在可行的集合上的线性最小化相比,弗兰克 - 沃尔夫方法在统计和机器学习应用中变得越来越有用,尤其是在线性最小化的设置上比投影更有效。在经验风险最小化的设置中,统计和机器学习中的基本优化问题之一 - 弗兰克 - 沃尔夫方法的计算有效性通常在数据观察数$ n $的数量中线性增长。这与典型随机投影方法的情况形成鲜明对比。为了减少对$ n $的依赖性,我们将寻求典型平滑损耗功能的二阶平滑度(例如,最小二乘损失和逻辑损失),我们建议使用泰勒串联序列的Frank-Wolfe方法修改Frank-Wolfe方法,包括确定性和随机设置的变体。与当前的最新方法相比,最佳公差$ \ varepsilon $足够小,我们的方法能够同时减少对大$ n $的依赖,同时获得Frank-Wolfe方法的最佳收敛速率,在凸和非凸设置中。我们还提出了一种新型的自适应阶梯尺寸方法,我们可以为其提供计算保证。最后,我们提出的计算实验表明,我们的方法对凸面和非convex二进制分类问题的现有数据集上的现有方法表现出非常明显的速度。
translated by 谷歌翻译
We consider minimizing the average of a very large number of smooth and possibly non-convex functions. This optimization problem has deserved much attention in the past years due to the many applications in different fields, the most challenging being training Machine Learning models. Widely used approaches for solving this problem are mini-batch gradient methods which, at each iteration, update the decision vector moving along the gradient of a mini-batch of the component functions. We consider the Incremental Gradient (IG) and the Random reshuffling (RR) methods which proceed in cycles, picking batches in a fixed order or by reshuffling the order after each epoch. Convergence properties of these schemes have been proved under different assumptions, usually quite strong. We aim to define ease-controlled modifications of the IG/RR schemes, which require a light additional computational effort and can be proved to converge under very weak and standard assumptions. In particular, we define two algorithmic schemes, monotone or non-monotone, in which the IG/RR iteration is controlled by using a watchdog rule and a derivative-free line search that activates only sporadically to guarantee convergence. The two schemes also allow controlling the updating of the stepsize used in the main IG/RR iteration, avoiding the use of preset rules. We prove convergence under the lonely assumption of Lipschitz continuity of the gradients of the component functions and perform extensive computational analysis using Deep Neural Architectures and a benchmark of datasets. We compare our implementation with both full batch gradient methods and online standard implementation of IG/RR methods, proving that the computational effort is comparable with the corresponding online methods and that the control on the learning rate may allow faster decrease.
translated by 谷歌翻译