由于迭代元素的结构诱导属性,尤其是在可行的集合上的线性最小化相比,弗兰克 - 沃尔夫方法在统计和机器学习应用中变得越来越有用,尤其是在线性最小化的设置上比投影更有效。在经验风险最小化的设置中,统计和机器学习中的基本优化问题之一 - 弗兰克 - 沃尔夫方法的计算有效性通常在数据观察数$ n $的数量中线性增长。这与典型随机投影方法的情况形成鲜明对比。为了减少对$ n $的依赖性,我们将寻求典型平滑损耗功能的二阶平滑度(例如,最小二乘损失和逻辑损失),我们建议使用泰勒串联序列的Frank-Wolfe方法修改Frank-Wolfe方法,包括确定性和随机设置的变体。与当前的最新方法相比,最佳公差$ \ varepsilon $足够小,我们的方法能够同时减少对大$ n $的依赖,同时获得Frank-Wolfe方法的最佳收敛速率,在凸和非凸设置中。我们还提出了一种新型的自适应阶梯尺寸方法,我们可以为其提供计算保证。最后,我们提出的计算实验表明,我们的方法对凸面和非convex二进制分类问题的现有数据集上的现有方法表现出非常明显的速度。
translated by 谷歌翻译
我们提出了一种新颖的随机弗兰克 - 沃尔夫(又名条件梯度)算法,用于使用广义的线性预测/结构进行约束的平滑有限和最小化。这类问题包括稀疏,低级别或其他结构化约束的经验风险最小化。提出的方法易于实现,不需要阶梯尺寸调整,并且具有独立于数据集大小的恒定触电成本。此外,作为该方法的副产品,我们获得了Frank-Wolfe间隙的随机估计器,可以用作停止标准。根据设置,提出的方法匹配或改进了随机Frank-Wolfe算法的最佳计算保证。几个数据集上的基准强调了不同的策略,其中所提出的方法比相关方法表现出更快的经验收敛性。最后,我们在开源软件包中提供了所有考虑的方法的实现。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
我们研究了凸面和非凸面设置的差异私有随机优化。对于凸面的情况,我们专注于非平滑通用线性损耗(GLL)的家庭。我们的$ \ ell_2 $ setting算法在近线性时间内实现了最佳的人口风险,而最知名的差异私有算法在超线性时间内运行。我们的$ \ ell_1 $ setting的算法具有近乎最佳的人口风险$ \ tilde {o} \ big(\ sqrt {\ frac {\ log {n \ log {d}} {n \ varepsilon} \ big)$,以及避免\ Cite {ASI:2021}的尺寸依赖性下限为一般非平滑凸损耗。在差别私有的非凸面设置中,我们提供了几种新算法,用于近似居住的人口风险。对于具有平稳损失和多面体约束的$ \ ell_1 $ tuce,我们提供第一个近乎尺寸的独立速率$ \ tilde o \ big(\ frac {\ log ^ {2/3} {d}} {{(n \ varepsilon)^ {1/3}}} \大)在线性时间。对于具有平滑损耗的约束$ \ ell_2 $ -case,我们获得了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/3}} + \ frac {d ^ { 1/5}} {(n \ varepsilon)^ {2/5}} \ big)$。最后,对于$ \ ell_2 $ -case,我们为{\ em非平滑弱凸}的第一种方法提供了速率$ \ tilde o \ big(\ frac {1} {n ^ {1/4}} + \ FRAC {D ^ {1/6}} {(n \ varepsilon)^ {1/3}} \ big)$,它在$ d = o(\ sqrt {n})时匹配最好的现有非私有算法$。我们还将上面的所有结果扩展到Non-Convex $ \ ell_2 $ setting到$ \ ell_p $ setting,其中$ 1 <p \ leq 2 $,只有polylogarithmic(维度在尺寸)的速度下。
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
In large-scale distributed learning, security issues have become increasingly important. Particularly in a decentralized environment, some computing units may behave abnormally, or even exhibit Byzantine failures-arbitrary and potentially adversarial behavior. In this paper, we develop distributed learning algorithms that are provably robust against such failures, with a focus on achieving optimal statistical performance. A main result of this work is a sharp analysis of two robust distributed gradient descent algorithms based on median and trimmed mean operations, respectively. We prove statistical error rates for three kinds of population loss functions: strongly convex, nonstrongly convex, and smooth non-convex. In particular, these algorithms are shown to achieve order-optimal statistical error rates for strongly convex losses. To achieve better communication efficiency, we further propose a median-based distributed algorithm that is provably robust, and uses only one communication round. For strongly convex quadratic loss, we show that this algorithm achieves the same optimal error rate as the robust distributed gradient descent algorithms.
translated by 谷歌翻译
我们研究了Markovian数据的受约束非凸的随机优化问题,研究了无投射条件梯度算法。特别是,我们专注于马尔可夫链的过渡内核是国家依赖的情况。这种随机优化问题在各种机器学习问题中出现,包括战略分类和强化学习。对于此问题,我们确定了随机一阶甲骨文的调用数量和线性最小化的甲骨文以获得适当定义的$ \ epsilon $ -Stationary点,是$ \ MATHCAL {O}(1/\Epsilon^{2.5})$和$ \ Mathcal {O}(1/\ Epsilon^{5.5})$。我们还从经验上证明了算法在神经网络中战略分类问题上的性能。
translated by 谷歌翻译
低秩矩阵恢复的现有结果在很大程度上专注于二次损失,这享有有利的性质,例如限制强的强凸/平滑度(RSC / RSM)以及在所有低等级矩阵上的良好调节。然而,许多有趣的问题涉及更一般,非二次损失,这不满足这些属性。对于这些问题,标准的非耦合方法,例如秩约为秩约为预定的梯度下降(A.K.A.迭代硬阈值)和毛刺蒙特罗分解可能具有差的经验性能,并且没有令人满意的理论保证了这些算法的全球和快速收敛。在本文中,我们表明,具有非二次损失的可证实低级恢复中的关键组成部分是规律性投影oracle。该Oracle限制在适当的界限集中迭代到低级矩阵,损耗功能在其上表现良好并且满足一组近似RSC / RSM条件。因此,我们分析配备有这样的甲骨文的(平均)投影的梯度方法,并证明它在全球和线性地收敛。我们的结果适用于广泛的非二次低级估计问题,包括一个比特矩阵感测/完成,个性化排名聚集,以及具有等级约束的更广泛的广义线性模型。
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
最近的一些实证研究表明,重要的机器学习任务,例如训练深神网络,表现出低级别的结构,其中损耗函数仅在输入空间的几个方向上差异很大。在本文中,我们利用这种低级结构来降低基于规范梯度的方法(例如梯度下降(GD))的高计算成本。我们提出的\ emph {低率梯度下降}(lrgd)算法找到了$ \ epsilon $ - approximate的固定点$ p $ - 维功能,首先要识别$ r \ r \ leq p $重要的方向,然后估算真实的方向每次迭代的$ p $维梯度仅通过计算$ r $方向来计算定向衍生物。我们确定强烈凸和非convex目标函数的LRGD的“定向甲骨文复杂性”是$ \ Mathcal {o}(r \ log(1/\ epsilon) + rp) + rp)$ and $ \ Mathcal {o}(R /\ epsilon^2 + rp)$。当$ r \ ll p $时,这些复杂性小于$ \ mathcal {o}的已知复杂性(p \ log(1/\ epsilon))$和$ \ mathcal {o}(p/\ epsilon^2) {\ gd}的$分别在强凸和非凸口设置中。因此,LRGD显着降低了基于梯度的方法的计算成本,以实现足够低级别的功能。在分析过程中,我们还正式定义和表征精确且近似级别函数的类别。
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
在本文中,我们重新审视了私人经验风险最小化(DP-erm)和差异私有随机凸优化(DP-SCO)的问题。我们表明,来自统计物理学(Langevin Exfusion(LD))的经过良好研究的连续时间算法同时为DP-SCO和DP-SCO提供了最佳的隐私/实用性权衡,$ \ epsilon $ -DP和$ $ \ epsilon $ -DP和$ (\ epsilon,\ delta)$ - dp均用于凸和强烈凸损失函数。我们为LD提供新的时间和尺寸独立统一稳定性,并使用我们为$ \ epsilon $ -DP提供相应的最佳超额人口风险保证。 $ \ epsilon $ -DP的DP-SCO保证的一个重要属性是,它们将非私人最佳界限匹配为$ \ epsilon \与\ infty $。在此过程中,我们提供了各种技术工具,这些工具可能引起独立的关注:i)在两个相邻数据集上运行损失功能时,一个新的r \'enyi Divergence绑定了LD,ii)最后一个过多的经验风险范围迭代LD,类似于Shamir和Zhang的嘈杂随机梯度下降(SGD)和iii)的LD,对LD进行了两期多余的风险分析,其中第一阶段是当扩散在任何合理意义上都没有在任何合理意义上融合到固定分布时,在第二阶段扩散已收敛到吉布斯分布的变体。我们的普遍性结果至关重要地依赖于LD的动力学。当它融合到固定分布时,我们获得了$ \ epsilon $ -DP的最佳界限。当它仅在很短的时间内运行$ \ propto 1/p $时,我们在$(\ epsilon,\ delta)$ -DP下获得最佳界限。在这里,$ p $是模型空间的维度。
translated by 谷歌翻译
我们提出了一种基于优化的基于优化的框架,用于计算差异私有M估算器以及构建差分私立置信区的新方法。首先,我们表明稳健的统计数据可以与嘈杂的梯度下降或嘈杂的牛顿方法结合使用,以便分别获得具有全局线性或二次收敛的最佳私人估算。我们在局部强大的凸起和自我协调下建立当地和全球融合保障,表明我们的私人估算变为对非私人M估计的几乎最佳附近的高概率。其次,我们通过构建我们私有M估计的渐近方差的差异私有估算来解决参数化推断的问题。这自然导致近​​似枢轴统计,用于构建置信区并进行假设检测。我们展示了偏置校正的有效性,以提高模拟中的小样本实证性能。我们说明了我们在若干数值例子中的方法的好处。
translated by 谷歌翻译
我们在高维批处理设置中提出了统计上健壮和计算高效的线性学习方法,其中功能$ d $的数量可能超过样本量$ n $。在通用学习环境中,我们采用两种算法,具体取决于所考虑的损失函数是否为梯度lipschitz。然后,我们将我们的框架实例化,包括几种应用程序,包括香草稀疏,群 - 帕克斯和低升级矩阵恢复。对于每种应用,这导致了有效而强大的学习算法,这些算法在重尾分布和异常值的存在下达到了近乎最佳的估计率。对于香草$ S $ -SPARSITY,我们能够以重型尾巴和$ \ eta $ - 腐败的计算成本与非企业类似物相当的计算成本达到$ s \ log(d)/n $速率。我们通过开放源代码$ \ mathtt {python} $库提供了有效的算法实现文献中提出的最新方法。
translated by 谷歌翻译
我们研究了一类算法,用于在内部级别物镜强烈凸起时求解随机和确定性设置中的彼此优化问题。具体地,我们考虑基于不精确的隐含区分的算法,并且我们利用热门开始策略来摊销精确梯度的估计。然后,我们介绍了一个统一的理论框架,受到奇异的扰动系统(Habets,1974)的研究来分析这种摊销算法。通过使用此框架,我们的分析显示了匹配可以访问梯度无偏见估计的Oracle方法的计算复杂度的算法,从而优于彼此优化的许多现有结果。我们在合成实验中说明了这些发现,并展示了这些算法对涉及几千个变量的超参数优化实验的效率。
translated by 谷歌翻译
We consider the constrained sampling problem where the goal is to sample from a distribution $\pi(x)\propto e^{-f(x)}$ and $x$ is constrained on a convex body $\mathcal{C}\subset \mathbb{R}^d$. Motivated by penalty methods from optimization, we propose penalized Langevin Dynamics (PLD) and penalized Hamiltonian Monte Carlo (PHMC) that convert the constrained sampling problem into an unconstrained one by introducing a penalty function for constraint violations. When $f$ is smooth and the gradient is available, we show $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in terms of the total variation distance and $\tilde{\mathcal{O}}(\cdot)$ hides some logarithmic factors. For PHMC, we improve this result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence rate results for Hamiltonian Monte Carlo methods in the constrained sampling setting that can handle non-convex $f$ and can provide guarantees with the best dimension dependency among existing methods with deterministic gradients. We then consider the setting where unbiased stochastic gradients are available. We propose PSGLD and PSGHMC that can handle stochastic gradients without Metropolis-Hasting correction steps. When $f$ is strongly convex and smooth, we obtain an iteration complexity of $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ respectively in the 2-Wasserstein distance. For the more general case, when $f$ is smooth and non-convex, we also provide finite-time performance bounds and iteration complexity results. Finally, we test our algorithms on Bayesian LASSO regression and Bayesian constrained deep learning problems.
translated by 谷歌翻译
我们考虑最小化高维目标函数的问题,该功能可以包括正则化术语,使用(可能的噪声)评估该功能。这种优化也称为无衍生,零阶或黑匣子优化。我们提出了一个新的$ \ textbf {z} $ feroth - $ \ textbf {o} $ rder $ \ textbf {r} $ ptimization方法,称为zoro。当潜在的梯度大致稀疏时,Zoro需要很少的客观函数评估,以获得降低目标函数的新迭代。我们通过自适应,随机梯度估计器实现这一点,然后是不精确的近端梯度方案。在一个新颖的大致稀疏梯度假设和各种不同的凸面设置下,我们显示了zoro的(理论和实证)收敛速率仅对对数依赖于问题尺寸。数值实验表明,Zoro在合成和实际数据集中优于具有相似假设的现有方法。
translated by 谷歌翻译
This work proposes a universal and adaptive second-order method for minimizing second-order smooth, convex functions. Our algorithm achieves $O(\sigma / \sqrt{T})$ convergence when the oracle feedback is stochastic with variance $\sigma^2$, and improves its convergence to $O( 1 / T^3)$ with deterministic oracles, where $T$ is the number of iterations. Our method also interpolates these rates without knowing the nature of the oracle apriori, which is enabled by a parameter-free adaptive step-size that is oblivious to the knowledge of smoothness modulus, variance bounds and the diameter of the constrained set. To our knowledge, this is the first universal algorithm with such global guarantees within the second-order optimization literature.
translated by 谷歌翻译
We initiate a formal study of reproducibility in optimization. We define a quantitative measure of reproducibility of optimization procedures in the face of noisy or error-prone operations such as inexact or stochastic gradient computations or inexact initialization. We then analyze several convex optimization settings of interest such as smooth, non-smooth, and strongly-convex objective functions and establish tight bounds on the limits of reproducibility in each setting. Our analysis reveals a fundamental trade-off between computation and reproducibility: more computation is necessary (and sufficient) for better reproducibility.
translated by 谷歌翻译
我们提出了随机方差降低算法,以求解凸 - 凸座鞍点问题,单调变异不平等和单调夹杂物。我们的框架适用于Euclidean和Bregman设置中的外部,前向前后和前反向回复的方法。所有提出的方法都在与确定性的对应物相同的环境中收敛,并且它们要么匹配或改善了解决结构化的最低最大问题的最著名复杂性。我们的结果加强了变异不平等和最小化之间的差异之间的对应关系。我们还通过对矩阵游戏的数值评估来说明方法的改进。
translated by 谷歌翻译