我们引入了一种降低尺寸的二阶方法(DRSOM),用于凸和非凸的不受约束优化。在类似信任区域的框架下,我们的方法保留了二阶方法的收敛性,同时仅在两个方向上使用Hessian-Vector产品。此外,计算开销仍然与一阶相当,例如梯度下降方法。我们证明该方法的复杂性为$ O(\ epsilon^{ - 3/2})$,以满足子空间中的一阶和二阶条件。DRSOM的适用性和性能通过逻辑回归,$ L_2-L_P $最小化,传感器网络定位和神经网络培训的各种计算实验展示。对于神经网络,我们的初步实施似乎在训练准确性和迭代复杂性方面与包括SGD和ADAM在内的最先进的一阶方法获得了计算优势。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
We propose a trust-region stochastic sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with stochastic objectives and deterministic equality constraints. We consider a fully stochastic setting, where in each iteration a single sample is generated to estimate the objective gradient. The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to employ indefinite Hessian matrices (i.e., Hessians without modification) in SQP subproblems. As a trust-region method for constrained optimization, our algorithm needs to address an infeasibility issue -- the linearized equality constraints and trust-region constraints might lead to infeasible SQP subproblems. In this regard, we propose an \textit{adaptive relaxation technique} to compute the trial step that consists of a normal step and a tangential step. To control the lengths of the two steps, we adaptively decompose the trust-region radius into two segments based on the proportions of the feasibility and optimality residuals to the full KKT residual. The normal step has a closed form, while the tangential step is solved from a trust-region subproblem, to which a solution ensuring the Cauchy reduction is sufficient for our study. We establish the global almost sure convergence guarantee for TR-StoSQP, and illustrate its empirical performance on both a subset of problems in the CUTEst test set and constrained logistic regression problems using data from the LIBSVM collection.
translated by 谷歌翻译
在本文中,我们考虑发现非凸锥优化的近似二阶固定点(SOSP),该点在仿射子空间和凸锥的交点上最小化了两倍的可微分函数。特别是,我们提出了一个基于牛顿 - 偶联的梯度(牛顿-CG)的障碍方法,用于查找$(\ epsilon,\ sqrt {\ epsilon})$ - 此问题的SOSP。我们的方法不仅可以实现,而且还达到了$ {\ cal o}(\ epsilon^{ - 3/2})$的迭代复杂性,它匹配找到$的二阶方法的最著名迭代复杂性(以找到$(\ epsilon,\ sqrt {\ epsilon})$ - 无约束的非convex优化的sosp。$ \ widetilde {\ cal o}的操作复杂性(\ epsilon^{ - 3/2} \ min \ {也是为我们的方法建立的。
translated by 谷歌翻译
我们应用随机顺序二次编程(STOSQP)算法来求解受约束的非线性优化问题,在该问题是随机的,并且约束是确定性的。我们研究了一个完全随机的设置,其中每次迭代中只有一个样本可用于估计物镜的梯度和黑森州。我们允许stosqp选择一个随机架子$ \ bar {\ alpha} _t $适应性,使得$ \ beta_t \ leq \ leq \ bar {\ alpha} _t \ leq \ leq \ beta_t+beta_t+\ chi_t+\ chi_t $,wither = o(\ beta_t)$是预定的确定性序列。我们还允许STOSQP通过随机迭代求解器(例如,使用草图和项目方法)求解牛顿系统。而且我们不需要不精确的牛顿方向的近似误差即可消失。对于这个一般的STOSQP框架,我们建立了其最后一次迭代的渐近收敛速率,最差的案例迭代复杂性是副产品。我们执行统计推断。特别是,有了适当的衰减$ \ beta_t,\ chi_t $,我们表明:(i)STOSQP方案最多可以采用$ o(1/\ epsilon^4)$ iterations $ iterations $ iTerations以实现$ \ epsilon $ -Stationarity; (ii)几乎毫无疑问,$ \ |(x_t -x^\ star,\ lambda_t- \ lambda^\ star)\ | | = o(\ sqrt {\ beta_t \ log(1/\ beta_t)})+o(\ chi_t/\ beta_t)$,其中$(x_t,\ lambda_t)$是primal-dimal-dimal-dialal-dialal-dialal-dual stosqp itselmate; (iii)序列$ 1/\ sqrt {\ beta_t} \ cdot(x_t -x^\ star,\ lambda_t- \ lambda_t- \ lambda^\ star)$收敛到平均零高斯分布,具有非琐事的共价矩阵。此外,我们建立了$(x_t,\ lambda_t)$的Berry-Esseen,以定量地测量其分布功能的收敛性。我们还为协方差矩阵提供了实用的估计器,可以使用iTerates $ \ {(x_t,\ lambda_t)\} _ t $构建$(x^\ star,\ lambda^\ star)$的置信区间(x^\ star,\ lambda^\ star)$。我们的定理使用最可爱的测试集中的非线性问题验证。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
In this book chapter, we briefly describe the main components that constitute the gradient descent method and its accelerated and stochastic variants. We aim at explaining these components from a mathematical point of view, including theoretical and practical aspects, but at an elementary level. We will focus on basic variants of the gradient descent method and then extend our view to recent variants, especially variance-reduced stochastic gradient schemes (SGD). Our approach relies on revealing the structures presented inside the problem and the assumptions imposed on the objective function. Our convergence analysis unifies several known results and relies on a general, but elementary recursive expression. We have illustrated this analysis on several common schemes.
translated by 谷歌翻译
This paper shows that a perturbed form of gradient descent converges to a second-order stationary point in a number iterations which depends only poly-logarithmically on dimension (i.e., it is almost "dimension-free"). The convergence rate of this procedure matches the wellknown convergence rate of gradient descent to first-order stationary points, up to log factors. When all saddle points are non-degenerate, all second-order stationary points are local minima, and our result thus shows that perturbed gradient descent can escape saddle points almost for free.Our results can be directly applied to many machine learning applications, including deep learning. As a particular concrete example of such an application, we show that our results can be used directly to establish sharp global convergence rates for matrix factorization. Our results rely on a novel characterization of the geometry around saddle points, which may be of independent interest to the non-convex optimization community.
translated by 谷歌翻译
最近的一些实证研究表明,重要的机器学习任务,例如训练深神网络,表现出低级别的结构,其中损耗函数仅在输入空间的几个方向上差异很大。在本文中,我们利用这种低级结构来降低基于规范梯度的方法(例如梯度下降(GD))的高计算成本。我们提出的\ emph {低率梯度下降}(lrgd)算法找到了$ \ epsilon $ - approximate的固定点$ p $ - 维功能,首先要识别$ r \ r \ leq p $重要的方向,然后估算真实的方向每次迭代的$ p $维梯度仅通过计算$ r $方向来计算定向衍生物。我们确定强烈凸和非convex目标函数的LRGD的“定向甲骨文复杂性”是$ \ Mathcal {o}(r \ log(1/\ epsilon) + rp) + rp)$ and $ \ Mathcal {o}(R /\ epsilon^2 + rp)$。当$ r \ ll p $时,这些复杂性小于$ \ mathcal {o}的已知复杂性(p \ log(1/\ epsilon))$和$ \ mathcal {o}(p/\ epsilon^2) {\ gd}的$分别在强凸和非凸口设置中。因此,LRGD显着降低了基于梯度的方法的计算成本,以实现足够低级别的功能。在分析过程中,我们还正式定义和表征精确且近似级别函数的类别。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
对于光滑的强凸目标,梯度下降的经典理论可确保相对于梯度评估的数量的线性收敛。一个类似的非球形理论是具有挑战性的:即使目标在每一次迭代的目标流畅时,相应的本地模型也是不稳定的,传统的补救措施需要不可预测的许多切割平面。我们提出了对局部优化的梯度下降迭代的多点概括。虽然设计了一般目标,但我们受到“最大平滑”模型的动机,可在最佳状态下捕获子样本维度。当目标本身自象最大的情况时,我们证明了线性融合,并且实验表明了更普遍的现象。
translated by 谷歌翻译
我们介绍了一种牛顿型方法,可以从任何初始化和带有Lipschitz Hessians的任意凸面目标收敛。通过将立方规范化与某种自适应levenberg - Marquardt罚款合并来实现这一目标。特别地,我们表明由$ x ^ {k + 1} = x ^ k - \ bigl(\ nabla ^ 2 f(x ^ k)+ \ sqrt {h \ | \ nabla f(x ^ k)给出的迭代)\ |} \ mathbf {i} \ bigr)^ { - 1} \ nabla f(x ^ k)$,其中$ h> 0 $是一个常数,用$ \ mathcal {o}全球收敛(\ frac{1} {k ^ 2})$率。我们的方法是牛顿方法的第一个变体,具有廉价迭代和可怕的全球融合。此外,我们证明当目的强烈凸起时,本地我们的方法会收敛超连续。为了提高方法的性能,我们提供了一种不需要超参数的线路搜索程序,并且可提供高效。
translated by 谷歌翻译
本文主要侧重于计算向量的欧几里德投影到$ \ ell_ {p} $ ball,其中$ p \ in(0,1)$。这种问题是统计机器学习中的核心构建块和信号处理任务,因为它促进了稀疏性的能力。但是,用于查找投影的有效数值算法仍然不可用,特别是在大规模优化中。为满足这一挑战,我们首先推出了这个问题的一流必备的最优性条件。基于该表征,我们通过求解一系列投影来制定一种用于计算静止点的新颖性方法,以在重新重量$ \ ell_ {1} $ - 球上。这种方法实际上是简单的实现和计算效率。此外,所提出的算法显示在温和条件下唯一会聚,并且具有最坏情况$ O(1 / \ SQRT {k})$收敛速率。数值实验证明了我们所提出的算法的效率。
translated by 谷歌翻译
We consider minimizing a smooth and strongly convex objective function using a stochastic Newton method. At each iteration, the algorithm is given an oracle access to a stochastic estimate of the Hessian matrix. The oracle model includes popular algorithms such as Subsampled Newton and Newton Sketch. Despite using second-order information, these existing methods do not exhibit superlinear convergence, unless the stochastic noise is gradually reduced to zero during the iteration, which would lead to a computational blow-up in the per-iteration cost. We propose to address this limitation with Hessian averaging: instead of using the most recent Hessian estimate, our algorithm maintains an average of all the past estimates. This reduces the stochastic noise while avoiding the computational blow-up. We show that this scheme exhibits local $Q$-superlinear convergence with a non-asymptotic rate of $(\Upsilon\sqrt{\log (t)/t}\,)^{t}$, where $\Upsilon$ is proportional to the level of stochastic noise in the Hessian oracle. A potential drawback of this (uniform averaging) approach is that the averaged estimates contain Hessian information from the global phase of the method, i.e., before the iterates converge to a local neighborhood. This leads to a distortion that may substantially delay the superlinear convergence until long after the local neighborhood is reached. To address this drawback, we study a number of weighted averaging schemes that assign larger weights to recent Hessians, so that the superlinear convergence arises sooner, albeit with a slightly slower rate. Remarkably, we show that there exists a universal weighted averaging scheme that transitions to local convergence at an optimal stage, and still exhibits a superlinear convergence rate nearly (up to a logarithmic factor) matching that of uniform Hessian averaging.
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
We analyze Newton's method with lazy Hessian updates for solving general possibly non-convex optimization problems. We propose to reuse a previously seen Hessian for several iterations while computing new gradients at each step of the method. This significantly reduces the overall arithmetical complexity of second-order optimization schemes. By using the cubic regularization technique, we establish fast global convergence of our method to a second-order stationary point, while the Hessian does not need to be updated each iteration. For convex problems, we justify global and local superlinear rates for lazy Newton steps with quadratic regularization, which is easier to compute. The optimal frequency for updating the Hessian is once every $d$ iterations, where $d$ is the dimension of the problem. This provably improves the total arithmetical complexity of second-order algorithms by a factor $\sqrt{d}$.
translated by 谷歌翻译
在本文中,我们研究并证明了拟牛顿算法的Broyden阶级的非渐近超线性收敛速率,包括Davidon - Fletcher - Powell(DFP)方法和泡沫 - 弗莱彻 - 夏诺(BFGS)方法。这些准牛顿方法的渐近超线性收敛率在文献中已经广泛研究,但它们明确的有限时间局部会聚率未得到充分调查。在本文中,我们为Broyden Quasi-Newton算法提供了有限时间(非渐近的)收敛分析,在目标函数强烈凸起的假设下,其梯度是Lipschitz连续的,并且其Hessian在最佳解决方案中连续连续。我们表明,在最佳解决方案的本地附近,DFP和BFGS生成的迭代以$(1 / k)^ {k / 2} $的超连线率收敛到最佳解决方案,其中$ k $是迭代次数。我们还证明了类似的本地超连线收敛结果,因为目标函数是自我协调的情况。几个数据集的数值实验证实了我们显式的收敛速度界限。我们的理论保证是第一个为准牛顿方法提供非渐近超线性收敛速率的效果之一。
translated by 谷歌翻译
本文研究了关于Riemannian流形的大规模优化问题,其目标函数是负面概要损失的有限总和。这些问题在各种机器学习和信号处理应用中出现。通过在歧管环境中引入Fisher信息矩阵的概念,我们提出了一种新型的Riemannian自然梯度方法,可以将其视为自然梯度方法的自然扩展,从欧几里得环境到歧管设置。我们在标准假设下建立了我们提出的方法的几乎纯净的全球融合。此外,我们表明,如果损失函数满足某些凸度和平稳性条件,并且输入输出图满足了雅各布稳定条件,那么我们提出的方法享有局部线性 - 或在Riemannian jacobian的Lipschitz连续性下,输入输出图,甚至二次 - 收敛速率。然后,我们证明,如果网络的宽度足够大,则可以通过具有批归归量的两层完全连接的神经网络来满足Riemannian Jacobian稳定性条件。这证明了我们的收敛率结果的实际相关性。对机器学习产生的应用的数值实验证明了该方法比最先进的方法的优势。
translated by 谷歌翻译
Two-level stochastic optimization formulations have become instrumental in a number of machine learning contexts such as continual learning, neural architecture search, adversarial learning, and hyperparameter tuning. Practical stochastic bilevel optimization problems become challenging in optimization or learning scenarios where the number of variables is high or there are constraints. In this paper, we introduce a bilevel stochastic gradient method for bilevel problems with lower-level constraints. We also present a comprehensive convergence theory that covers all inexact calculations of the adjoint gradient (also called hypergradient) and addresses both the lower-level unconstrained and constrained cases. To promote the use of bilevel optimization in large-scale learning, we introduce a practical bilevel stochastic gradient method (BSG-1) that does not require second-order derivatives and, in the lower-level unconstrained case, dismisses any system solves and matrix-vector products.
translated by 谷歌翻译