无监督的在线流媒体模型被认为是样本在线时尚到达超过$ $时​​隙到达的地方。有M $分类器,其混乱矩阵未知先验。在每个插槽中,最多一个样本可以由任何分类器标记。样品的精度是从各种分类器获得的该组标签的函数。样本的效用是其精度的标量倍数减去响应时间(出发时隙和到达槽的差),其中出发插槽也由算法决定。由于每个分类器可以在每个时隙最多一个样本中标记,因此在获得更大一组特定样本的标签之间存在权衡,以提高其准确性及其响应时间。考虑最大化所有样本的实用程序总和的问题,其中学习混淆矩阵,样本分类器匹配分配和样本出发插槽决策彼此相互依赖。所提出的算法首先了解了混淆矩阵,然后使用贪婪算法进行采样分类器匹配。一旦其增量效用变为非正数,样本会出发。我们表明,所提出的算法的竞争比率是$ \ FRAC {1} {2} - {\ Mathcal o} \ left(\ frac {\ log t} {t} \ oled)$。
translated by 谷歌翻译
我们研究了一个单服务器调度问题,目的是最大程度地降低工作所产生的预期累积持有成本,在该计划中,调度程序未知定义随机工作成本的参数。我们考虑一个允许不同工作类别的一般设置,同一班级的工作在统计上相同的持有成本和服务时间,并且跨课程任意数量的工作数量。在每个时间步骤中,服务器都可以处理作业并观察尚未完成的工作的随机保留成本。我们考虑了一个基于学习的$ C \ MU $规则计划,该计划从固定持续时间的先发制期开始,作为学习阶段,并收集了有关工作的数据,它将切换到非抢占计划。我们的算法旨在处理平均职位持有成本的大小差距的实例,并实现近乎最佳的性能保证。遗憾评估了算法的性能,其中基准是当已知工作参数时,$ c \ mu $规则计划策略可能达到的最低持有成本。我们表现​​出遗憾的下限和算法,这些算法几乎获得了遗憾的上限。我们的数值结果证明了我们的算法的功效,并表明我们的遗憾分析几乎很紧张。
translated by 谷歌翻译
动态治疗方案(DTRS)是个性化的,适应性的,多阶段的治疗计划,可将治疗决策适应个人的初始特征,并在随后的每个阶段中的中级结果和特征,在前阶段受到决策的影响。例子包括对糖尿病,癌症和抑郁症等慢性病的个性化一线和二线治疗,这些治疗适应患者对一线治疗,疾病进展和个人特征的反应。尽管现有文献主要集中于估算离线数据(例如从依次随机试验)中的最佳DTR,但我们研究了以在线方式开发最佳DTR的问题,在线与每个人的互动都会影响我们的累积奖励和我们的数据收集,以供我们的数据收集。未来的学习。我们将其称为DTR匪徒问题。我们提出了一种新颖的算法,通过仔细平衡探索和剥削,可以保证当过渡和奖励模型是线性时,可以实现最佳的遗憾。我们证明了我们的算法及其在合成实验和使用现实世界中对重大抑郁症的适应性治疗的案例研究中的好处。
translated by 谷歌翻译
我们考虑了众包平台的成本优化利用问题,即给定规定的误差阈值,用于二进制,无监督分类的项目。假定众包平台上的工人根据他们的技能,经验和/或过去的表现,将其分为多个类。我们通过未知的混淆矩阵对每个工人类建模,并根据标签预测支付(已知的)价格。对于此设置,我们提出了用于从工人那里获取标签预测以及推断项目的真实标签的算法。我们证明,如果可用的(未标记)项目数量足够大,我们的算法满足规定的错误阈值,从而产生了几乎最佳的成本。最后,我们通过广泛的案例研究来验证我们的算法和一些受其启发的启发式启发。
translated by 谷歌翻译
本研究提出了两个新的动态分配算法,将难民和寻求庇护者与东道国内的地理区域相匹配。目前在瑞士的多年来飞行员中实施的第一个,旨在通过最小不和谐的在线分配算法来最大限度地提高难民的平均预期就业水平(或利息的任何衡量结果)。尽管与后视最佳解决方案相比,所提出的算法达到了近乎最佳的预期就业,但它可能会随着时间的推移而导致定期不平衡的分配。这导致了移民资源和代理商的不良工作量低效,他们无法在地方之间移动。为了解决这个问题,第二种算法平衡了改善难民结果的目标,随着时间的推移甚至对每个地方的甚至分配。拟议方法的性能是使用来自美国最大的移民安置机构之一的真正难民移民安置数据进行说明。在此数据集上,我们发现分配平衡算法可以随着时间的推移实现接近完美的平衡,而与纯就业最大化算法相比,预期就业几乎没有损失。此外,分配平衡算法提供了许多辅助益处,包括对未知到达流量的鲁棒性,并通过更大的探索增加弹性。
translated by 谷歌翻译
资源限制的在线分配问题是收入管理和在线广告中的核心问题。在这些问题中,请求在有限的地平线期间顺序到达,对于每个请求,决策者需要选择消耗一定数量资源并生成奖励的动作。目标是最大限度地提高累计奖励,这是对资源总消费的限制。在本文中,我们考虑一种数据驱动的设置,其中使用决策者未知的输入模型生成每个请求的奖励和资源消耗。我们设计了一般的算法算法,可以在各种输入模型中实现良好的性能,而不知道它们面临的类型类型。特别是,我们的算法在独立和相同的分布式输入以及各种非静止随机输入模型下是渐近的最佳选择,并且当输入是对抗性时,它们达到渐近最佳的固定竞争比率。我们的算法在Lagrangian双色空间中运行:它们为使用在线镜像血管更新的每个资源维护双倍乘数。通过相应地选择参考功能,我们恢复双梯度下降和双乘法权重更新算法。与现有的在线分配问题的现有方法相比,所产生的算法简单,快速,不需要在收入函数,消费函数和动作空间中凸起。我们将应用程序讨论到网络收入管理,在线竞标,重复拍卖,预算限制,与高熵的在线比例匹配,以及具有有限库存的个性化分类优化。
translated by 谷歌翻译
在本文中,我们研究了一个多级多服务器排队系统,其具有代表作业和服务器的特征向量的Bilinear模型之后的作业服务器分配随机奖励。我们的目标是对oracle策略的遗憾最小化,该策略具有完整的系统参数信息。我们提出了一种调度算法,该算法使用线性强盗算法以及动态作业分配给服务器。对于基线设置,其中均值工作时间与所有作业相同,我们表明我们的算法具有子线性遗憾,以及在地平线时间内的平均队列长度上的子线性绑定。我们进一步示出了类似的界限在更一般的假设下保持,允许不同的作业类别的非相同均值工作时间和一组时变的服务器类。我们还表明,可以通过访问作业类的交通强度的算法来保证更好的遗憾和均值队列长度界限。我们呈现数值实验的结果,示出了我们算法的遗憾和平均队列长度依赖于各种系统参数,并将它们的性能与先前提出的算法进行比较,使用合成随机生成的数据和真实世界集群计算数据跟踪。
translated by 谷歌翻译
The research area of algorithms with predictions has seen recent success showing how to incorporate machine learning into algorithm design to improve performance when the predictions are correct, while retaining worst-case guarantees when they are not. Most previous work has assumed that the algorithm has access to a single predictor. However, in practice, there are many machine learning methods available, often with incomparable generalization guarantees, making it hard to pick a best method a priori. In this work we consider scenarios where multiple predictors are available to the algorithm and the question is how to best utilize them. Ideally, we would like the algorithm's performance to depend on the quality of the best predictor. However, utilizing more predictions comes with a cost, since we now have to identify which prediction is the best. We study the use of multiple predictors for a number of fundamental problems, including matching, load balancing, and non-clairvoyant scheduling, which have been well-studied in the single predictor setting. For each of these problems we introduce new algorithms that take advantage of multiple predictors, and prove bounds on the resulting performance.
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
我们通过可共享的手臂设置概括了多武器的多臂土匪(MP-MAB)问题,其中几场比赛可以共享同一臂。此外,每个可共享的组都有有限的奖励能力和“每载”奖励分配,这两者都是学习者所不知道的。可共享臂的奖励取决于负载,这是“每载”奖励乘以拉动手臂的戏剧数量或当比赛数量超过容量限制时的奖励能力。当“按负载”奖励遵循高斯分布时,我们证明了样本复杂性的下限,从负载依赖的奖励中学习容量,也遗憾的是这个新的MP-MAB问题的下限。我们设计了一个容量估计器,其样品复杂性上限在奖励手段和能力方面与下限匹配。我们还提出了一种在线学习算法来解决该问题并证明其遗憾的上限。这个遗憾的上界的第一任期与遗憾的下限相同,其第二和第三个术语显然也对应于下边界。广泛的实验验证了我们算法的性能以及其在5G和4G基站选择中的增长。
translated by 谷歌翻译
Active learning with strong and weak labelers considers a practical setting where we have access to both costly but accurate strong labelers and inaccurate but cheap predictions provided by weak labelers. We study this problem in the streaming setting, where decisions must be taken \textit{online}. We design a novel algorithmic template, Weak Labeler Active Cover (WL-AC), that is able to robustly leverage the lower quality weak labelers to reduce the query complexity while retaining the desired level of accuracy. Prior active learning algorithms with access to weak labelers learn a difference classifier which predicts where the weak labels differ from strong labelers; this requires the strong assumption of realizability of the difference classifier (Zhang and Chaudhuri,2015). WL-AC bypasses this \textit{realizability} assumption and thus is applicable to many real-world scenarios such as random corrupted weak labels and high dimensional family of difference classifiers (\textit{e.g.,} deep neural nets). Moreover, WL-AC cleverly trades off evaluating the quality with full exploitation of weak labelers, which allows to convert any active learning strategy to one that can leverage weak labelers. We provide an instantiation of this template that achieves the optimal query complexity for any given weak labeler, without knowing its accuracy a-priori. Empirically, we propose an instantiation of the WL-AC template that can be efficiently implemented for large-scale models (\textit{e.g}., deep neural nets) and show its effectiveness on the corrupted-MNIST dataset by significantly reducing the number of labels while keeping the same accuracy as in passive learning.
translated by 谷歌翻译
在随着时间变化的组合环境中的在线决策激励,我们研究了将离线算法转换为其在线对应物的问题。我们专注于使用贪婪算法对局部错误的贪婪算法进行恒定因子近似的离线组合问题。对于此类问题,我们提供了一个通用框架,该框架可有效地将稳健的贪婪算法转换为使用Blackwell的易近算法。我们证明,在完整信息设置下,由此产生的在线算法具有$ O(\ sqrt {t})$(近似)遗憾。我们进一步介绍了Blackwell易接近性的强盗扩展,我们称之为Bandit Blackwell的可接近性。我们利用这一概念将贪婪的稳健离线算法转变为匪(t^{2/3})$(近似)$(近似)的遗憾。展示了我们框架的灵活性,我们将脱机之间的转换应用于收入管理,市场设计和在线优化的几个问题,包括在线平台中的产品排名优化,拍卖中的储备价格优化以及supperular tossodular最大化。 。我们还将还原扩展到连续优化的类似贪婪的一阶方法,例如用于最大化连续强的DR单调下调功能,这些功能受到凸约束的约束。我们表明,当应用于这些应用程序时,我们的转型会导致新的后悔界限或改善当前已知界限。我们通过为我们的两个应用进行数值模拟来补充我们的理论研究,在这两种应用中,我们都观察到,转换的数值性能在实际情况下优于理论保证。
translated by 谷歌翻译
通过新兴应用程序,如现场媒体电子商务,促销和建议,我们介绍和解决了一般的非静止多武装强盗问题,具有以下两个特征:(i)决策者可以拉动和收集每次期间,从最多$ k \,(\ ge 1)美元的奖励; (ii)手臂拉动后的预期奖励立即下降,然后随着ARM空闲时间的增加,非参数恢复。目的是最大化预期累计奖励超过$ T $时间段,我们设计了一类“纯粹的周期性政策”,共同设置了拉动每个臂的时间。对于拟议的政策,我们证明了离线问题和在线问题的性能保证。对于脱机问题,当已知所有型号参数时,所提出的周期性策略获得1- \ Mathcal O(1 / \ Sqrt {k})$的近似率,当$ k $生长时是渐近的最佳状态到无穷远。对于在线问题时,当模型参数未知并且需要动态学习时,我们将脱机周期性策略与在线策略上的上部置信程序进行集成。拟议的在线策略被证明是对脱机基准的近似拥有$ \ widetilde {\ mathcal o}(n \ sqrt {t})。我们的框架和政策设计可能在更广泛的离线规划和在线学习应用程序中阐明,具有非静止和恢复奖励。
translated by 谷歌翻译
在线学习通常需要探索以最大程度地提高长期奖励,但这是以短期“遗憾”为代价的。我们研究如何在多个小组之间分担这种探索成本。例如,在临床试验环境中,分配了亚最佳治疗的患者有效地产生了勘探成本。当患者根据种族或年龄与自然群体相关联时,自然要问任何单一群体所承担的探索成本是否“公平”。如此有动力,我们介绍了“分组”的强盗模型。我们利用公理讨价还价的理论,尤其是纳什议价解决方案,以形式化可能构成跨群体勘探成本的公平分裂的方式。一方面,我们表明,任何遗憾的政策都引起了最不公平的结果:此类政策将在可能的情况下传递最“处于弱势”的群体。更具建设性的方式,我们得出了最佳公平且同时享受“公平价格”的政策。我们通过对华法林剂量的上下文匪徒进行案例研究来说明我们的算法框架的相对优点,我们关注多个种族和年龄段的探索成本。
translated by 谷歌翻译
本文在动态定价的背景下调查预先存在的离线数据对在线学习的影响。我们在$ t $期间的销售地平线上研究单一产品动态定价问题。每个时段的需求由产品价格根据具有未知参数的线性需求模型确定。我们假设在销售地平线开始之前,卖方已经有一些预先存在的离线数据。离线数据集包含$ N $示例,其中每个标准是由历史价格和相关的需求观察组成的输入输出对。卖方希望利用预先存在的离线数据和顺序在线数据来最大限度地减少在线学习过程的遗憾。我们的特征在于在线学习过程的最佳遗憾的脱机数据的大小,位置和分散的联合效果。具体而言,离线数据的大小,位置和色散由历史样本数量为$ n $,平均历史价格与最佳价格$ \ delta $之间的距离以及历史价格的标准差价Sigma $分别。我们表明最佳遗憾是$ \ widetilde \ theta \ left(\ sqrt {t} \ wedge \ frac {t} {(n \ wedge t)\ delta ^ 2 + n \ sigma ^ 2} \右)$,基于“面对不确定性”原则的“乐观主义”的学习算法,其遗憾是最佳的对数因子。我们的结果揭示了对脱机数据的大小的最佳遗憾率的惊人变换,我们称之为阶段转型。此外,我们的结果表明,离线数据的位置和分散也对最佳遗憾具有内在效果,我们通过逆平面法量化了这种效果。
translated by 谷歌翻译
We consider a long-term average profit maximizing admission control problem in an M/M/1 queuing system with a known arrival rate but an unknown service rate. With a fixed reward collected upon service completion and a cost per unit of time enforced on customers waiting in the queue, a dispatcher decides upon arrivals whether to admit the arriving customer or not based on the full history of observations of the queue-length of the system. \cite[Econometrica]{Naor} showed that if all the parameters of the model are known, then it is optimal to use a static threshold policy - admit if the queue-length is less than a predetermined threshold and otherwise not. We propose a learning-based dispatching algorithm and characterize its regret with respect to optimal dispatch policies for the full information model of \cite{Naor}. We show that the algorithm achieves an $O(1)$ regret when all optimal thresholds with full information are non-zero, and achieves an $O(\ln^{3+\epsilon}(N))$ regret in the case that an optimal threshold with full information is $0$ (i.e., an optimal policy is to reject all arrivals), where $N$ is the number of arrivals and $\epsilon>0$.
translated by 谷歌翻译
我们研究了改进的多臂匪徒(IMAB)问题,其中从手臂获得的奖励随着收到的拉力数量而增加。该模型为教育和就业等领域中的许多现实世界问题提供了优雅的抽象,在这种领域中,关于机会分配的决定可能会影响社区的未来能力以及它们之间的差异。在这种情况下,决策者必须考虑她的决策对未来奖励的影响,除了随时最大化其累积奖励的标准目标。在许多这些应用中,决策者的时间范围未知,这激发了在技术上更具挑战性的地平线环境中对IMAB问题的研究。我们研究了地平线 - 统一环境中两个看似相互冲突的目标之间产生的紧张:a)根据武器的当前奖励,在任何时候最大化累积奖励,b)确保具有更好的长期奖励的武器获得足够的机会即使他们最初的奖励很低。我们表明,令人惊讶的是,在这种情况下,这两个目标是相互对齐的。我们的主要贡献是对IMAB问题的任何时间算法,它可以获得最佳的累积奖励,同时确保武器在足够的时间内发挥其真正的潜力。由于缺乏机会,我们的算法减轻了最初的差异,并继续拉动手臂直到停止改善。我们通过证明a)imab问题的任何算法来证明我们的算法的最佳性,无论其功利主义,无论多么有效,都必须遭受$ \ omega(t)$政策后悔和$ \ omega(k)$竞争比率相对于最佳的比例离线政策和b)我们算法的竞争比率为$ O(k)$。
translated by 谷歌翻译
Crowdsourcing has emerged as an effective platform to label a large volume of data in a cost- and time-efficient manner. Most previous works have focused on designing an efficient algorithm to recover only the ground-truth labels of the data. In this paper, we consider multi-choice crowdsourced labeling with the goal of recovering not only the ground truth but also the most confusing answer and the confusion probability. The most confusing answer provides useful information about the task by revealing the most plausible answer other than the ground truth and how plausible it is. To theoretically analyze such scenarios, we propose a model where there are top-two plausible answers for each task, distinguished from the rest of choices. Task difficulty is quantified by the confusion probability between the top two, and worker reliability is quantified by the probability of giving an answer among the top two. Under this model, we propose a two-stage inference algorithm to infer the top-two answers as well as the confusion probability. We show that our algorithm achieves the minimax optimal convergence rate. We conduct both synthetic and real-data experiments and demonstrate that our algorithm outperforms other recent algorithms. We also show the applicability of our algorithms in inferring the difficulty of tasks and training neural networks with the soft labels composed of the top-two most plausible classes.
translated by 谷歌翻译
In this paper, we investigate the impact of diverse user preference on learning under the stochastic multi-armed bandit (MAB) framework. We aim to show that when the user preferences are sufficiently diverse and each arm can be optimal for certain users, the O(log T) regret incurred by exploring the sub-optimal arms under the standard stochastic MAB setting can be reduced to a constant. Our intuition is that to achieve sub-linear regret, the number of times an optimal arm being pulled should scale linearly in time; when all arms are optimal for certain users and pulled frequently, the estimated arm statistics can quickly converge to their true values, thus reducing the need of exploration dramatically. We cast the problem into a stochastic linear bandits model, where both the users preferences and the state of arms are modeled as {independent and identical distributed (i.i.d)} d-dimensional random vectors. After receiving the user preference vector at the beginning of each time slot, the learner pulls an arm and receives a reward as the linear product of the preference vector and the arm state vector. We also assume that the state of the pulled arm is revealed to the learner once its pulled. We propose a Weighted Upper Confidence Bound (W-UCB) algorithm and show that it can achieve a constant regret when the user preferences are sufficiently diverse. The performance of W-UCB under general setups is also completely characterized and validated with synthetic data.
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译