本文提出了一种转移学习方法,以重新校准我们先前开发的车轮探针神经网络(WHONET),以在全球导航卫星系统(GNSS)不可用的环境中进行车辆定位。已显示WHONET具有学习车轮速度测量中不确定性的能力,以校正和准确的车辆定位。这些不确定性可能表现为轮胎压力从泥泞和不平坦的地形或车轮滑动中的驾驶变化。但是,关注数据驱动方法(例如WHONET模型)的共同原因通常是无法将模型推广到新车。在机器学习模型在特定领域进行培训但部署在另一个领域的情况下,该模型的性能降低了。在现实生活中,从变化到车辆的动力学到传感器噪声的新模式分布,有几个因素对这种降解有影响,偏见会使测试传感器数据的数据因训练数据而异。因此,挑战是探索允许训练有素的机器学习模型自发适应新车辆域的技术。因此,我们提出了重新校准的轮循环神经网络(R-WHONET),该神经网络将WHONET模型从其源域(最初训练该模型的车辆和环境)适应到目标域(一种新车辆,在其上进行了训练)。训练有素的模型将被部署)。通过在几个GNSS中断场景上进行性能评估 - 短期复杂驾驶方案以及长期GNSS中断方案。我们证明,在源域中训练的模型并不能很好地推广到目标域中的新车辆。但是,我们表明,我们的新提议的框架将WHONET模型对目标域中的新车辆的概括提高了32%。
translated by 谷歌翻译
在本文中,提出了一种深入的学习方法,可以在全球导航卫星系统(GNSS)剥夺环境中精确定位轮式车辆。在没有GNSS信号的情况下,可以使用关于从车轮编码器记录的车辆(或其他机器人相似的车轮)速度的信息来通过车辆的线性速度的整合来提供用于车辆的连续定位信息流离失所。然而,来自车轮速度测量的位移估计的特征在于不确定因素,其可以表现为车轮滑动或/和对轮胎尺寸或压力的变化,从潮湿和泥泞的道路驱动器或轮胎佩戴。因此,我们利用深度学习的最近进步提出了车轮内径神经网络(WHONET)来学习校正和准确定位所需的车轮速度测量中的不确定性。首先在若干具有挑战性的驾驶场景中评估所提出的WHONET的性能,例如环形交叉路口,锋利的转弯,硬制动和湿路(漂移)。然后,在长期GNSS中断场景中进一步且广泛地评估WHONET的性能,分别在493km的总距离上的长期GNSS中断场景。获得的实验结果表明,在任何180多个行驶之后,所提出的方法能够准确地定位其原始对应物的定位误差高达93%的车辆。 Whonet的实现可以在https://github.com/onyekpeu/whonet找到。
translated by 谷歌翻译
众所周知,在ADAS应用中,需要良好的估计车辆的姿势。本文提出了一种鉴定的2.5D内径术,由此由横摆率传感器和四轮速度传感器衍生的平面内径测量由悬架的线性模型增强。虽然平面内径术的核心是在文献中已经理解的横摆率模型,但我们通过拟合二次传入信号,实现内插,推断和车辆位置的更精细的整合来增强这一点。我们通过DGPS / IMU参考的实验结果表明,该模型提供了与现有方法相比的高精度的内径估计。利用返回车辆参考点高度变化的传感器改变悬架配置,我们定义了车辆悬架的平面模型,从而增加了内径模型。我们提出了一个实验框架和评估标准,通过该标准评估了内径术的良好和与现有方法进行了比较。该测距模型旨在支持众所周知的低速环绕式摄像头系统。因此,我们介绍了一些应用程序结果,该应用结果显示使用所提出的内径术来查看和计算机视觉应用程序的性能提升
translated by 谷歌翻译
检测,预测和减轻交通拥堵是针对改善运输网络的服务水平的目标。随着对更高分辨率的更大数据集的访问,深度学习对这种任务的相关性正在增加。近年来几篇综合调查论文总结了运输领域的深度学习应用。然而,运输网络的系统动态在非拥挤状态和拥塞状态之间变化大大变化 - 从而需要清楚地了解对拥堵预测特异性特异性的挑战。在这项调查中,我们在与检测,预测和缓解拥堵相关的任务中,介绍了深度学习应用的当前状态。重复和非经常性充血是单独讨论的。我们的调查导致我们揭示了当前研究状态的固有挑战和差距。最后,我们向未来的研究方向提出了一些建议,因为所确定的挑战的答案。
translated by 谷歌翻译
滑动检测对于在外星人表面驾驶的流浪者的安全性和效率至关重要。当前的行星流动站滑移检测系统依赖于视觉感知,假设可以在环境中获得足够的视觉特征。然而,基于视觉的方法容易受到感知降解的行星环境,具有主要低地形特征,例如岩石岩,冰川地形,盐散发物以及较差的照明条件,例如黑暗的洞穴和永久阴影区域。仅依靠视觉传感器进行滑动检测也需要额外的计算功率,并降低了流动站的遍历速率。本文回答了如何检测行星漫游者的车轮滑移而不取决于视觉感知的问题。在这方面,我们提出了一个滑动检测系统,该系统从本体感受的本地化框架中获取信息,该框架能够提供数百米的可靠,连续和计算有效的状态估计。这是通过使用零速度更新,零角度更新和非独立限制作为惯性导航系统框架的伪测量更新来完成的。对所提出的方法进行了对实际硬件的评估,并在行星 - 分析环境中进行了现场测试。该方法仅使用IMU和车轮编码器就可以达到150 m左右的92%滑动检测精度。
translated by 谷歌翻译
对深度神经网络(DNN)进行了训练,以估计在城市区域驾驶的汽车速度,并输入来自低成本六轴惯性测量单元(IMU)的测量流。通过在配备了全球导航卫星系统(GNSS)实时运动学(RTK)定位设备和同步IMU的汽车中,通过驾驶以色列阿什杜德市(Ashdod)驾驶以色列市Ashdod市收集了三个小时的数据。使用以50 Hz的高速率获得的位置测量值计算了汽车速度的地面真实标签。提出了具有长短期内存层的DNN体系结构,以实现高频速度估计,以说明以前的输入历史记录和速度,加速度和角速度之间的非线性关系。制定了简化的死亡算法定位方案,以评估训练有素的模型,该模型提供了速度伪测量。训练有素的模型显示可在4分钟车程中大大提高位置准确性,而无需使用GNSS位置更新。
translated by 谷歌翻译
当前的融合定位系统主要基于过滤算法,例如卡尔曼过滤或粒子过滤。但是,实际应用方案的系统复杂性通常很高,例如行人惯性导航系统中的噪声建模或指纹匹配和定位算法中的环境噪声建模。为了解决这个问题,本文提出了一个基于深度学习的融合定位系统,并提出了一种转移学习策略,以改善具有不同分布的样本的神经网络模型的性能。结果表明,在整个地板方案中,融合网络的平均定位精度为0.506米。转移学习的实验结果表明,惯性导航定位步骤大小和不同行人的旋转角的估计精度可以平均提高53.3%,可以将不同设备的蓝牙定位精度提高33.4%,并且融合可以提高。可以提高31.6%。
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
Multi-modal fusion is a basic task of autonomous driving system perception, which has attracted many scholars' interest in recent years. The current multi-modal fusion methods mainly focus on camera data and LiDAR data, but pay little attention to the kinematic information provided by the bottom sensors of the vehicle, such as acceleration, vehicle speed, angle of rotation. These information are not affected by complex external scenes, so it is more robust and reliable. In this paper, we introduce the existing application fields of vehicle bottom information and the research progress of related methods, as well as the multi-modal fusion methods based on bottom information. We also introduced the relevant information of the vehicle bottom information data set in detail to facilitate the research as soon as possible. In addition, new future ideas of multi-modal fusion technology for autonomous driving tasks are proposed to promote the further utilization of vehicle bottom information.
translated by 谷歌翻译
车辆到达时间预测已被广泛研究。随着物联网设备和深度学习技术的出现,估计的到达时间(ETA)已成为智能运输系统中的关键组成部分。尽管ETA存在许多工具,但由于特殊车辆的交通数据有限,ETA的特殊车辆(例如救护车,消防车等)仍然具有挑战性。现有作品使用一种模型用于所有类型的车辆,这可能会导致精确度较低。为了解决这个问题,作为该领域的第一个,我们为驾驶时间预测提出了一个深度转移学习框架TLETA。 TLETA构建了细胞时空知识网格,用于提取驾驶模式,并结合道路网络结构嵌入以构建ETA的深神经网络。 Tleta包含可转移的层,以支持不同类别的车辆之间的知识转移。重要的是,我们的转移模型仅训练最后一层以绘制转移的知识,从而大大减少了训练时间。实验研究表明,我们的模型以高精度预测旅行时间,并胜过许多最先进的方法。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
自动化驾驶系统应该有能力监督自己的性能并要求人类驱动程序在必要时接管。在车道保持场景中,车辆未来轨迹的预测是实现安全可靠的驾驶自动化的关键。以前关于车辆轨迹预测的研究主要分为两类,即基于物理和基于机动的方法。本文采用了基于物理的方法,提出了一种基于闭环车辆动力学模型的车道出发预测算法。我们使用扩展卡尔曼滤波器根据感测模块输出来估计当前车辆状态。然后,具有实际车道保持控制法的卡尔曼预测器用于预测未来的转向动作和车辆状态。车道出发评估模块评估车辆角位置的概率分布,并决定是否启动人类收购请求。预测算法能够描述未来车辆姿势的随机特征,其在模拟测试中被预先证明。最后,在15至50 km / h的速度下的道路测试进一步表明,专业方法可以准确地预测车辆未来的轨迹。它可以作为对自动化车道保持功能的通道偏离风险评估的有希望的解决方案。
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译
惯性导航系统与全球导航卫星系统之间的融合经常用于许多平台,例如无人机,陆地车辆和船舶船只。融合通常是在基于模型的扩展卡尔曼过滤框架中进行的。过滤器的关键参数之一是过程噪声协方差。它负责实时解决方案的准确性,因为它考虑了车辆动力学不确定性和惯性传感器质量。在大多数情况下,过程噪声被认为是恒定的。然而,由于整个轨迹的车辆动力学和传感器测量变化,过程噪声协方差可能会发生变化。为了应对这种情况,文献中建议了几种基于自适应的Kalman过滤器。在本文中,我们提出了一个混合模型和基于学习的自适应导航过滤器。我们依靠基于模型的Kalman滤波器和设计深神网络模型来调整瞬时系统噪声协方差矩阵,仅基于惯性传感器读数。一旦学习了过程噪声协方差,就可以将其插入建立的基于模型的Kalman滤波器中。在推导了提出的混合框架后,提出了使用四极管的现场实验结果,并给出了与基于模型的自适应方法进行比较。我们表明,所提出的方法在位置误差中获得了25%的改善。此外,提出的混合学习方法可以在任何导航过滤器以及任何相关估计问题中使用。
translated by 谷歌翻译
In this paper, we present a novel visual SLAM and long-term localization benchmark for autonomous driving in challenging conditions based on the large-scale 4Seasons dataset. The proposed benchmark provides drastic appearance variations caused by seasonal changes and diverse weather and illumination conditions. While significant progress has been made in advancing visual SLAM on small-scale datasets with similar conditions, there is still a lack of unified benchmarks representative of real-world scenarios for autonomous driving. We introduce a new unified benchmark for jointly evaluating visual odometry, global place recognition, and map-based visual localization performance which is crucial to successfully enable autonomous driving in any condition. The data has been collected for more than one year, resulting in more than 300 km of recordings in nine different environments ranging from a multi-level parking garage to urban (including tunnels) to countryside and highway. We provide globally consistent reference poses with up to centimeter-level accuracy obtained from the fusion of direct stereo-inertial odometry with RTK GNSS. We evaluate the performance of several state-of-the-art visual odometry and visual localization baseline approaches on the benchmark and analyze their properties. The experimental results provide new insights into current approaches and show promising potential for future research. Our benchmark and evaluation protocols will be available at https://www.4seasons-dataset.com/.
translated by 谷歌翻译
视觉内径(VO)估计是车辆状态估计和自主驾驶的重要信息来源。最近,基于深度学习的方法已经开始出现在文献中。但是,在驾驶的背景下,由于环境因素,摄像机放置等因素而导致的图像质量降低,单个传感器的方法通常容易出现故障。要解决这个问题,我们提出了一个深度传感器融合框架,其使用两者估计车辆运动来自多个板上摄像头的姿势和不确定性估计。我们使用混合CNN - RNN模型从一组连续图像中提取短时间形特征表示。然后,我们利用混合密度网络(MDN)来估计作为分布的混合和融合模块的6-DOF姿势,以使用来自多摄像机的MDN输出来估计最终姿势。我们在公开的大规模自动车辆数据集,Nuscenes上评估我们的方法。结果表明,与基于相机的估计相比,所提出的融合方法超越了最先进的,并提供了坚固的估计和准确的轨迹。
translated by 谷歌翻译
这项工作提出了一种新的方法,可以使用有效的鸟类视图表示和卷积神经网络在高速公路场景中预测车辆轨迹。使用基本的视觉表示,很容易将车辆位置,运动历史,道路配置和车辆相互作用轻松包含在预测模型中。 U-NET模型已被选为预测内核,以使用图像到图像回归方法生成场景的未来视觉表示。已经实施了一种方法来从生成的图形表示中提取车辆位置以实现子像素分辨率。该方法已通过预防数据集(一个板载传感器数据集)进行了培训和评估。已经评估了不同的网络配置和场景表示。这项研究发现,使用线性终端层和车辆的高斯表示,具有6个深度水平的U-NET是最佳性能配置。发现使用车道标记不会改善预测性能。平均预测误差为0.47和0.38米,对于纵向和横向坐标的最终预测误差分别为0.76和0.53米,预测轨迹长度为2.0秒。与基线方法相比,预测误差低至50%。
translated by 谷歌翻译
“轨迹”是指由地理空间中的移动物体产生的迹线,通常由一系列按时间顺序排列的点表示,其中每个点由地理空间坐标集和时间戳组成。位置感应和无线通信技术的快速进步使我们能够收集和存储大量的轨迹数据。因此,许多研究人员使用轨迹数据来分析各种移动物体的移动性。在本文中,我们专注于“城市车辆轨迹”,这是指城市交通网络中车辆的轨迹,我们专注于“城市车辆轨迹分析”。城市车辆轨迹分析提供了前所未有的机会,可以了解城市交通网络中的车辆运动模式,包括以用户为中心的旅行经验和系统范围的时空模式。城市车辆轨迹数据的时空特征在结构上相互关联,因此,许多先前的研究人员使用了各种方法来理解这种结构。特别是,由于其强大的函数近似和特征表示能力,深度学习模型是由于许多研究人员的注意。因此,本文的目的是开发基于深度学习的城市车辆轨迹分析模型,以更好地了解城市交通网络的移动模式。特别是,本文重点介绍了两项研究主题,具有很高的必要性,重要性和适用性:下一个位置预测,以及合成轨迹生成。在这项研究中,我们向城市车辆轨迹分析提供了各种新型模型,使用深度学习。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
In a typical car-following scenario, target vehicle speed fluctuations act as an external disturbance to the host vehicle and in turn affect its energy consumption. To control a host vehicle in an energy-efficient manner using model predictive control (MPC), and moreover, enhance the performance of an ecological adaptive cruise control (EACC) strategy, forecasting the future velocities of a target vehicle is essential. For this purpose, a deep recurrent neural network-based vehicle speed prediction using long-short term memory (LSTM) and gated recurrent units (GRU) is studied in this work. Besides these, the physics-based constant velocity (CV) and constant acceleration (CA) models are discussed. The sequential time series data for training (e.g. speed trajectories of the target and its preceding vehicles obtained through vehicle-to-vehicle (V2V) communication, road speed limits, traffic light current and future phases collected using vehicle-to-infrastructure (V2I) communication) is gathered from both urban and highway networks created in the microscopic traffic simulator SUMO. The proposed speed prediction models are evaluated for long-term predictions (up to 10 s) of target vehicle future velocities. Moreover, the results revealed that the LSTM-based speed predictor outperformed other models in terms of achieving better prediction accuracy on unseen test datasets, and thereby showcasing better generalization ability. Furthermore, the performance of EACC-equipped host car on the predicted velocities is evaluated, and its energy-saving benefits for different prediction horizons are presented.
translated by 谷歌翻译