In a typical car-following scenario, target vehicle speed fluctuations act as an external disturbance to the host vehicle and in turn affect its energy consumption. To control a host vehicle in an energy-efficient manner using model predictive control (MPC), and moreover, enhance the performance of an ecological adaptive cruise control (EACC) strategy, forecasting the future velocities of a target vehicle is essential. For this purpose, a deep recurrent neural network-based vehicle speed prediction using long-short term memory (LSTM) and gated recurrent units (GRU) is studied in this work. Besides these, the physics-based constant velocity (CV) and constant acceleration (CA) models are discussed. The sequential time series data for training (e.g. speed trajectories of the target and its preceding vehicles obtained through vehicle-to-vehicle (V2V) communication, road speed limits, traffic light current and future phases collected using vehicle-to-infrastructure (V2I) communication) is gathered from both urban and highway networks created in the microscopic traffic simulator SUMO. The proposed speed prediction models are evaluated for long-term predictions (up to 10 s) of target vehicle future velocities. Moreover, the results revealed that the LSTM-based speed predictor outperformed other models in terms of achieving better prediction accuracy on unseen test datasets, and thereby showcasing better generalization ability. Furthermore, the performance of EACC-equipped host car on the predicted velocities is evaluated, and its energy-saving benefits for different prediction horizons are presented.
translated by 谷歌翻译
With the evolution of power systems as it is becoming more intelligent and interactive system while increasing in flexibility with a larger penetration of renewable energy sources, demand prediction on a short-term resolution will inevitably become more and more crucial in designing and managing the future grid, especially when it comes to an individual household level. Projecting the demand for electricity for a single energy user, as opposed to the aggregated power consumption of residential load on a wide scale, is difficult because of a considerable number of volatile and uncertain factors. This paper proposes a customized GRU (Gated Recurrent Unit) and Long Short-Term Memory (LSTM) architecture to address this challenging problem. LSTM and GRU are comparatively newer and among the most well-adopted deep learning approaches. The electricity consumption datasets were obtained from individual household smart meters. The comparison shows that the LSTM model performs better for home-level forecasting than alternative prediction techniques-GRU in this case. To compare the NN-based models with contrast to the conventional statistical technique-based model, ARIMA based model was also developed and benchmarked with LSTM and GRU model outcomes in this study to show the performance of the proposed model on the collected time series data.
translated by 谷歌翻译
检测,预测和减轻交通拥堵是针对改善运输网络的服务水平的目标。随着对更高分辨率的更大数据集的访问,深度学习对这种任务的相关性正在增加。近年来几篇综合调查论文总结了运输领域的深度学习应用。然而,运输网络的系统动态在非拥挤状态和拥塞状态之间变化大大变化 - 从而需要清楚地了解对拥堵预测特异性特异性的挑战。在这项调查中,我们在与检测,预测和缓解拥堵相关的任务中,介绍了深度学习应用的当前状态。重复和非经常性充血是单独讨论的。我们的调查导致我们揭示了当前研究状态的固有挑战和差距。最后,我们向未来的研究方向提出了一些建议,因为所确定的挑战的答案。
translated by 谷歌翻译
最近,已经努力将信号阶段和时机(SPAT)消息标准化。这些消息包含所有信号交叉方法的信号相时机。因此,这些信息可用于有效的运动计划,从而导致更多均匀的交通流量和均匀的速度轮廓。尽管努力为半活化的信号控制系统提供了可靠的预测,但预测完全驱动控制的信号相时仍具有挑战性。本文提出了使用聚合的流量信号和循环检测器数据的时间序列预测框架。我们利用最先进的机器学习模型来预测未来信号阶段的持续时间。线性回归(LR),随机森林(RF)和长期内存(LSTM)神经网络的性能是针对天真基线模型进行评估的。结果基于瑞士苏黎世的全面信号控制系统的经验数据集表明,机器学习模型的表现优于常规预测方法。此外,基于树木的决策模型(例如RF)的表现最佳,其准确性满足实用应用要求。
translated by 谷歌翻译
Vehicle-to-Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non-line-of-sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, we proposed a Context-Aware Target Classification (CA-TC) module coupled with a hybrid learning-based predictive modeling technique for CVS systems. The CA-TC consists of two modules: A Context-Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA-TC, making them more robust and reliable. The CAM leverages vehicles path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real-world data, we learn a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior. We combine offline training and online model updates with on-the-fly forecasting to account for new possible driver behaviors. Finally, our framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.
translated by 谷歌翻译
本文介绍了一种机器学习方法,可以在宏观水平下模拟电动车辆的电力消耗,即在不存在速度轮廓,同时保持微观级别精度。对于这项工作,我们利用了基于代理的代理的运输工具来模拟了在各种场景变化的大芝加哥地区发生的模型旅行,以及基于物理的建模和仿真工具,以提供高保真能量消耗值。产生的结果构成了车辆路径能量结果的非常大的数据集,其捕获车辆和路由设置的可变性,并且掩盖了车速动力学的高保真时间序列。我们表明,尽管掩盖了影响能量消耗的所有内部动态,但是可以以深入的学习方法准确地学习聚合级能量消耗值。当有大规模数据可用,并且仔细量身定制的功能工程,精心设计的模型可以克服和检索潜在信息。该模型已部署并集成在Polaris运输系统仿真工具中,以支持各个充电决策的实时行为运输模型,以及电动车辆的重新排出。
translated by 谷歌翻译
交通速度预测是许多有价值应用程序的关键,由于其各种影响因素,它也是一项具有挑战性的任务。最近的工作试图通过各种混合模型获得更多信息,从而提高了预测准确性。但是,这些方法的空间信息采集方案存在两级分化问题。建模很简单,但包含很少的空间信息,或者建模是完整的,但缺乏灵活性。为了基于确保灵活性引入更多空间信息,本文提出了IRNET(可转让的交叉点重建网络)。首先,本文将相交重建为与相同结构的虚拟交集,从而简化了道路网络的拓扑结构。然后,将空间信息细分为交叉信息和交通流向的序列信息,并通过各种模型获得时空特征。第三,一种自我发项机制用于融合时空特征以进行预测。在与基线的比较实验中,不仅预测效应,而且转移性能具有明显的优势。
translated by 谷歌翻译
The time-series forecasting (TSF) problem is a traditional problem in the field of artificial intelligence. Models such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), and GRU (Gate Recurrent Units) have contributed to improving the predictive accuracy of TSF. Furthermore, model structures have been proposed to combine time-series decomposition methods, such as seasonal-trend decomposition using Loess (STL) to ensure improved predictive accuracy. However, because this approach is learned in an independent model for each component, it cannot learn the relationships between time-series components. In this study, we propose a new neural architecture called a correlation recurrent unit (CRU) that can perform time series decomposition within a neural cell and learn correlations (autocorrelation and correlation) between each decomposition component. The proposed neural architecture was evaluated through comparative experiments with previous studies using five univariate time-series datasets and four multivariate time-series data. The results showed that long- and short-term predictive performance was improved by more than 10%. The experimental results show that the proposed CRU is an excellent method for TSF problems compared to other neural architectures.
translated by 谷歌翻译
Accurate traffic flow prediction, a hotspot for intelligent transportation research, is the prerequisite for mastering traffic and making travel plans. The speed of traffic flow can be affected by roads condition, weather, holidays, etc. Furthermore, the sensors to catch the information about traffic flow will be interfered with by environmental factors such as illumination, collection time, occlusion, etc. Therefore, the traffic flow in the practical transportation system is complicated, uncertain, and challenging to predict accurately. This paper proposes a deep encoder-decoder prediction framework based on variational Bayesian inference. A Bayesian neural network is constructed by combining variational inference with gated recurrent units (GRU) and used as the deep neural network unit of the encoder-decoder framework to mine the intrinsic dynamics of traffic flow. Then, the variational inference is introduced into the multi-head attention mechanism to avoid noise-induced deterioration of prediction accuracy. The proposed model achieves superior prediction performance on the Guangzhou urban traffic flow dataset over the benchmarks, particularly when the long-term prediction.
translated by 谷歌翻译
准确预测网络范围的交通状况对于智能运输系统至关重要。在过去十年中,机器学习技术已被广泛用于此任务,导致最先进的性能。我们提出了一种新颖的深入学习模型,图卷积出的经常性神经网络(GCGRNN),预测网络范围,多步交通量。 GCGRNN可以在历史流量数据中自动捕获交通传感器和时间依赖性之间的空间相关性。我们已经使用加利福尼亚州洛杉矶的150个传感器中提取的两个交通数据集进行了评估我们的模型,分别在一小时和15分钟的时间分辨率。结果表明,我们的模型在预测准确性方面优于其他五个基准模型。例如,与使用每小时数据集的最新的扩散卷积经常性神经网络(DCRNN)模型相比,我们的模型将MAE减少25.3%,RMSE以29.2%,并用20.2%的MAPE。我们的模型还可以比DCRNN更快的培训达52%。 GCGRNN的数据和实现可以在https://github.com/leilin-research/gcgrnn找到。
translated by 谷歌翻译
公共收费站占用预测在开发智能充电策略方面发挥了重要意义,以减少电动车辆(EV)操作员和用户不便。然而,现有研究主要基于具有有限的准确度的传统经济学或时间序列方法。我们提出了一种新的混合长期内记忆神经网络,其包括历史充电状态序列和时间相关的特征,用于多步离散充电占用状态预测。与现有的LSTM网络不同,所提出的模型将不同类型的特征分开,并用混合神经网络架构处理它们。该模型与许多最先进的机器学习和深度学习方法进行了比较,基于从英国邓迪市的开放数据门户网站获得的EV充电数据。结果表明,该方法分别产生非常准确的预测(99.99%和81.87%,分别前进(10分钟)和6个步骤(1小时),优于基准接近的(+ 22.4%)前方预测和6步前方的预测和6.2%)。进行灵敏度分析,以评估模型参数对预测精度的影响。
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
准确的负载预测对于电力系统的电力市场运营以及电力系统中的其他实时决策任务至关重要。本文认为社区内的住宅客户的短期负荷预测(STLF)问题。现有的STLF工作主要侧重于预测馈线系统或单一客户的汇总负荷,但是在预测单个设备水平的负荷上,已经努力。在这项工作中,我们介绍了一种用于有效预测各个电器的功耗的STLF算法。所提出的方法在深度学习中强大的经常性神经网络(RNN)架构,称为长短短期记忆(LSTM)。当每个设备具有唯一重复的消耗模式时,将跟踪预测误差的模式,使得过去的预测误差可用于提高最终预测性能。实际负载数据集的数值测试证明了在现有的基于LSTM的方法和其他基准方法上提高了所提出的方法。
translated by 谷歌翻译
预测基金绩效对投资者和基金经理都是有益的,但这是一项艰巨的任务。在本文中,我们测试了深度学习模型是否比传统统计技术更准确地预测基金绩效。基金绩效通常通过Sharpe比率进行评估,该比例代表了风险调整的绩效,以确保基金之间有意义的可比性。我们根据每月收益率数据序列数据计算了年度夏普比率,该数据的时间序列数据为600多个投资于美国上市大型股票的开放式共同基金投资。我们发现,经过现代贝叶斯优化训练的长期短期记忆(LSTM)和封闭式复发单元(GRUS)深度学习方法比传统统计量相比,预测基金的Sharpe比率更高。结合了LSTM和GRU的预测的合奏方法,可以实现所有模型的最佳性能。有证据表明,深度学习和结合能提供有希望的解决方案,以应对基金绩效预测的挑战。
translated by 谷歌翻译
通过改善安全性,效率和移动性,自动车辆(AVS)的快速发展持有运输系统的巨大潜力。然而,通过AVS被采用的这些影响的进展尚不清楚。众多技术挑战是出于分析自治的部分采用:部分控制和观察,多车辆互动以及现实世界网络代表的纯粹场景的目标。本文研究了近期AV影响,研究了深度加强学习(RL)在低AV采用政权中克服了这些挑战的适用性。提出了一个模块化学习框架,它利用深rl来解决复杂的交通动态。模块组成用于捕获常见的交通现象(停止和转运交通拥堵,车道更改,交叉点)。在系统级速度方面,发现了学习的控制法则改善人类驾驶绩效,高达57%,只有4-7%的AVS。此外,在单线交通中,发现只有局部观察的小型神经网络控制规律消除了停止和转移的流量 - 超过所有已知的基于模型的控制器,以实现近乎最佳性能 - 并概括为OUT-分销交通密度。
translated by 谷歌翻译
从广泛的流量监视传感器收集的旅行时间数据需要大数据分析工具来查询,可视化和识别有意义的流量模式。本文利用了Caltrans性能测量系统(PEMS)系统的大规模旅行时间数据集,该系统是传统数据处理和建模工具的溢出。为了克服大量数据的挑战,大数据分析引擎Apache Spark和Apache MXNET用于数据争吵和建模。进行季节性和自相关以探索和可视化时变数据的趋势。受到许多人工智能(AI)任务的层次结构成功的启发,我们巩固了细胞和隐藏状态,从低级到高级LSTM传递,其注意力集中在类似于人类感知系统的运作方式上。设计的分层LSTM模型可以在不同的时间尺度上考虑依赖项,以捕获网络级别旅行时间的时空相关性。然后,设计了另一个自我发场模块,以将LSTM提取的功能连接到完全连接的层,从而预测所有走廊的旅行时间,而不是单个链接/路线。比较结果表明,层次的LSTM引起注意(HIERLSTMAT)模型在30分钟和45分钟的视野时给出了最佳的预测结果,并且可以成功预测不寻常的拥塞。通过将它们与流行的数据科学和深度学习框架进行比较,从大数据分析工具中得出的效率得到了评估。
translated by 谷歌翻译
物理运动模型为车辆运动提供了可解释的预测。但是,某些模型参数(例如与空气动力学和流体动力学相关的参数)非常昂贵,并且通常仅大致近似降低预测准确性。经常性的神经网络以低成本的价格实现了高预测准确性,因为它们可以使用车辆常规操作期间收集的廉价测量值,但是它们的结果很难解释。为了精确预测车辆状态,没有昂贵的物理参数测量,我们提出了一种混合方法,结合了深度学习和物理运动模型,包括新型的两阶段训练程序。我们通过将深神经网络的输出范围限制为混合模型的一部分来实现可解释性,这将神经网络引入的不确定性限制为已知数量。我们已经评估了船用和四轮运动的用例。结果表明,与现有的深度学习方法相比,我们的混合模型可以提高模型的解释性,而准确性没有降低。
translated by 谷歌翻译
可靠地预测围绕自动赛车的参赛者车辆的动议对于有效和表现计划至关重要。尽管高度表现力,但深度神经网络是黑盒模型,使其在安全至关重要的应用(例如自动驾驶)中具有挑战性。在本文中,我们介绍了一种结构化的方式,以预测具有深神网络的对立赛车的运动。最终可能的输出轨迹集受到限制。因此,可以给出有关预测的质量保证。我们通过将模型与基于LSTM的编码器架构一起评估模型来报告该模型的性能,这些架构是从高保真硬件中获取的数据中获得的。拟议的方法的表现优于预测准确性的基线,但仍能履行质量保证。因此,该模型的强大现实应用已被证明。介绍的模型被部署在慕尼黑技术大学的Indy Automous Challenge 2021中。本研究中使用的代码可作为开放源软件提供,网址为www.github.com/tumftm/mixnet。
translated by 谷歌翻译
A well-performing prediction model is vital for a recommendation system suggesting actions for energy-efficient consumer behavior. However, reliable and accurate predictions depend on informative features and a suitable model design to perform well and robustly across different households and appliances. Moreover, customers' unjustifiably high expectations of accurate predictions may discourage them from using the system in the long term. In this paper, we design a three-step forecasting framework to assess predictability, engineering features, and deep learning architectures to forecast 24 hourly load values. First, our predictability analysis provides a tool for expectation management to cushion customers' anticipations. Second, we design several new weather-, time- and appliance-related parameters for the modeling procedure and test their contribution to the model's prediction performance. Third, we examine six deep learning techniques and compare them to tree- and support vector regression benchmarks. We develop a robust and accurate model for the appliance-level load prediction based on four datasets from four different regions (US, UK, Austria, and Canada) with an equal set of appliances. The empirical results show that cyclical encoding of time features and weather indicators alongside a long-short term memory (LSTM) model offer the optimal performance.
translated by 谷歌翻译
在本文中,提出了一种深入的学习方法,可以在全球导航卫星系统(GNSS)剥夺环境中精确定位轮式车辆。在没有GNSS信号的情况下,可以使用关于从车轮编码器记录的车辆(或其他机器人相似的车轮)速度的信息来通过车辆的线性速度的整合来提供用于车辆的连续定位信息流离失所。然而,来自车轮速度测量的位移估计的特征在于不确定因素,其可以表现为车轮滑动或/和对轮胎尺寸或压力的变化,从潮湿和泥泞的道路驱动器或轮胎佩戴。因此,我们利用深度学习的最近进步提出了车轮内径神经网络(WHONET)来学习校正和准确定位所需的车轮速度测量中的不确定性。首先在若干具有挑战性的驾驶场景中评估所提出的WHONET的性能,例如环形交叉路口,锋利的转弯,硬制动和湿路(漂移)。然后,在长期GNSS中断场景中进一步且广泛地评估WHONET的性能,分别在493km的总距离上的长期GNSS中断场景。获得的实验结果表明,在任何180多个行驶之后,所提出的方法能够准确地定位其原始对应物的定位误差高达93%的车辆。 Whonet的实现可以在https://github.com/onyekpeu/whonet找到。
translated by 谷歌翻译