对于许多应用程序,例如同时本地化和映射(SLAM),基于点云的大规模识别是一项重要但具有挑战性的任务。以任务为云检索问题,以前的方法取得了令人愉快的成就。但是,如何处理由旋转问题引起的灾难性崩溃仍然不足。在本文中,为了解决这个问题,我们提出了一个基于点云的新型旋转型大型位置识别网络(RPR-NET)。特别是,为了解决问题,我们建议分三个步骤学习旋转不变的功能。首先,我们设计了三种新型的旋转不变特征(RIF),它们是可以保持旋转不变属性的低级特征。其次,使用这些Rifs,我们设计了一个细心的模块来学习旋转不变的内核。第三,我们将这些内核应用于先前的点云功能,以生成新功能,这是众所周知的SO(3)映射过程。通过这样做,可以学习高级场景特定的旋转不变功能。我们将上述过程称为细心的旋转不变卷积(ARICONV)。为了实现位置识别目标,我们构建了RPR-NET,它将Ariconv作为构建密集网络体系结构的基本单元。然后,可以从RPR-NET中充分提取用于基于检索的位置识别的强大全局描述符。普遍数据​​集的实验结果表明,我们的方法可以在解决旋转问题时显着优于现有的最新位置识别模型的可比结果,并显着优于其他旋转不变的基线模型。
translated by 谷歌翻译
基于点云的大规模地位识别对于许多应用程序,如同时本地化和映射(SLAM)等许多应用是基础的。虽然已经提出了许多模型并通过学习短程局部特征而实现了良好的性能,但往往忽略了远程语境特性。此外,模型大小也已成为其广泛应用的瓶颈。为了克服这些挑战,我们提出了一个超级轻型网络模型,被称为SVT-Net,用于大规模识别。具体地,在高效的3D稀疏卷积(SP-CONV)之上,提出了一种基于原子的稀疏体变压器(ASVT)和基于簇的稀疏体变压器(CSVT),以学习短程局部特征和长期 - 此模型中的上下文功能。由ASVT和CSVT组成,SVT-NET可以在基准数据集中实现最先进的,其精度和速度都具有超光模型尺寸(0.9M)。同时,引入了两种简化的SVT-NET版本,也实现了最先进的,进一步降低了模型尺寸至0.8米和0.4米。
translated by 谷歌翻译
大规模的地方认可是一项基本但具有挑战性的任务,在自主驾驶和机器人技术中起着越来越重要的作用。现有的方法已经达到了可接受的良好性能,但是,其中大多数都集中精力设计精美的全球描述符学习网络结构。长期以来忽略了特征概括和描述后的特征概括和描述符的重要性。在这项工作中,我们提出了一种名为GIDP的新方法,以学习良好的初始化并引起描述符,以供大规模识别。特别是,在GIDP中分别提出了无监督的动量对比度云预处理模块和基于重新的描述符后增强模块。前者旨在在训练位置识别模型之前对Point Cloud编码网络进行良好的初始化,而后来的目标是通过推理时间重新掌握预测的全局描述符。在室内和室外数据集上进行的广泛实验表明,我们的方法可以使用简单和一般的点云编码主干来实现最先进的性能。
translated by 谷歌翻译
点云分析没有姿势前导者在真实应用中非常具有挑战性,因为点云的方向往往是未知的。在本文中,我们提出了一个全新的点集学习框架prin,即点亮旋转不变网络,专注于点云分析中的旋转不变特征提取。我们通过密度意识的自适应采样构建球形信号,以处理球形空间中的扭曲点分布。提出了球形Voxel卷积和点重新采样以提取每个点的旋转不变特征。此外,我们将Prin扩展到称为Sprin的稀疏版本,直接在稀疏点云上运行。 Prin和Sprin都可以应用于从对象分类,部分分割到3D特征匹配和标签对齐的任务。结果表明,在随机旋转点云的数据集上,Sprin比无任何数据增强的最先进方法表现出更好的性能。我们还为我们的方法提供了彻底的理论证明和分析,以实现我们的方法实现的点明智的旋转不变性。我们的代码可在https://github.com/qq456cvb/sprin上找到。
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
Visual localization plays an important role for intelligent robots and autonomous driving, especially when the accuracy of GNSS is unreliable. Recently, camera localization in LiDAR maps has attracted more and more attention for its low cost and potential robustness to illumination and weather changes. However, the commonly used pinhole camera has a narrow Field-of-View, thus leading to limited information compared with the omni-directional LiDAR data. To overcome this limitation, we focus on correlating the information of 360 equirectangular images to point clouds, proposing an end-to-end learnable network to conduct cross-modal visual localization by establishing similarity in high-dimensional feature space. Inspired by the attention mechanism, we optimize the network to capture the salient feature for comparing images and point clouds. We construct several sequences containing 360 equirectangular images and corresponding point clouds based on the KITTI-360 dataset and conduct extensive experiments. The results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
基于激光雷达的3D单一对象跟踪是机器人技术和自动驾驶中的一个具有挑战性的问题。当前,现有方法通常会遇到长距离对象通常具有非常稀疏或部分倾斜的点云的问题,这使得模型含糊不清。模棱两可的功能将很难找到目标对象,并最终导致不良跟踪结果。为了解决此问题,我们使用功能强大的变压器体系结构,并为基于点云的3D单一对象跟踪任务提出一个点轨转换器(PTT)模块。具体而言,PTT模块通过计算注意力重量来生成微调的注意力特征,该功能指导追踪器的重点关注目标的重要功能,并提高复杂场景中的跟踪能力。为了评估我们的PTT模块,我们将PTT嵌入主要方法中,并构建一个名为PTT-NET的新型3D SOT跟踪器。在PTT-NET中,我们分别将PTT嵌入了投票阶段和提案生成阶段。投票阶段中的PTT模块可以模拟点斑块之间的交互作用,该点贴片学习上下文依赖于上下文。同时,提案生成阶段中的PTT模块可以捕获对象和背景之间的上下文信息。我们在Kitti和Nuscenes数据集上评估了PTT-NET。实验结果证明了PTT模块的有效性和PTT-NET的优越性,PTT-NET的优势超过了基线,在CAR类别中〜10%。同时,我们的方法在稀疏场景中也具有显着的性能提高。通常,变压器和跟踪管道的组合使我们的PTT-NET能够在两个数据集上实现最先进的性能。此外,PTT-NET可以在NVIDIA 1080TI GPU上实时以40fps实时运行。我们的代码是为研究社区开源的,网址为https://github.com/shanjiayao/ptt。
translated by 谷歌翻译
在本文中,我们提出了一个新颖的基于本地描述符的框架,称您仅假设一次(Yoho),以注册两个未对齐的点云。与大多数依赖脆弱的局部参考框架获得旋转不变性的现有局部描述符相反,拟议的描述符通过群体epoivariant特征学习的最新技术实现了旋转不变性,这为点密度和噪声带来了更大的鲁棒性。同时,Yoho中的描述符也有一个旋转模棱两可的部分,这使我们能够从仅一个对应假设估算注册。这样的属性减少了可行变换的搜索空间,因此大大提高了Yoho的准确性和效率。广泛的实验表明,Yoho在四个广泛使用的数据集(3DMATCH/3DLOMATCH数据集,ETH数据集和WHU-TLS数据集)上实现了卓越的性能。更多详细信息在我们的项目页面中显示:https://hpwang-whu.github.io/yoho/。
translated by 谷歌翻译
我们描述了一种新的方法,该方法是基于与高级隐式语义特征的低级颜色和几何特征的汇总颜色和几何特征的室内识别。它使用了一个2阶段的深度学习框架,其中第一阶段经过了语义分割的辅助任务的训练,第二阶段的第二阶段使用了第一阶段的层中的特征来生成区分描述符以进行位置识别。辅助任务鼓励这些功能在语义上有意义,因此将RGB点云数据中的几何形状和颜色汇总为具有隐式语义信息。我们使用从扫描仪数据集派生的室内识别数据集进行培训和评估,其中一个包括由100个不同房间生成的3,608点云的测试集。与传统的基于功能的方法和四种最先进的深度学习方法进行比较表明,我们的方法显着优于所有五种方法,例如,取得前3名平均召回率为75%,而41%的平均召回率为41%最接近的竞争对手方法。我们的代码可在以下网址找到:https://github.com/yuhangming/semantic-indoor-place-recognition
translated by 谷歌翻译
成功的点云注册依赖于在强大的描述符上建立的准确对应关系。但是,现有的神经描述符要么利用旋转变化的主链,其性能在较大的旋转下下降,要么编码局部几何形状,而局部几何形状不太明显。为了解决这个问题,我们介绍Riga以学习由设计和全球了解的旋转不变的描述符。从稀疏局部区域的点对特征(PPF)中,旋转不变的局部几何形状被编码为几何描述符。随后,全球对3D结构和几何环境的认识都以旋转不变的方式合并。更具体地说,整个框架的3D结构首先由我们的全球PPF签名表示,从中学到了结构描述符,以帮助几何描述符感知本地区域以外的3D世界。然后将整个场景的几何上下文全局汇总到描述符中。最后,将稀疏区域的描述插值到密集的点描述符,从中提取对应关系进行注册。为了验证我们的方法,我们对对象和场景级数据进行了广泛的实验。在旋转较大的情况下,Riga就模型Net40的相对旋转误差而超过了最先进的方法8 \度,并将特征匹配的回忆提高了3DLOMATCH上的至少5个百分点。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
由于激光雷达扫描数据的大规模,噪音和数据不完整,注册Urban Point Clouds是一项艰巨的任务。在本文中,我们提出了SARNET,这是一个新型的语义增强注册网络,旨在在城市规模上实现有效的城市点云的注册。与以前仅在点级空间中构建对应关系的方法不同,我们的方法完全利用语义特征来提高注册精度。具体而言,我们提取具有高级语义分割网络的每点语义标签,并构建先前的语义零件到部分对应关系。然后,我们将语义信息纳入基于学习的注册管道中,该管道由三个核心模块组成:基于语义的最远点采样模块,以有效地滤除异常值和动态对象;一个语义增强的特征提取模块,用于学习更多的判别点描述符;语义改制的转换估计模块,该模块利用先前的语义匹配作为掩码,通过减少错误匹配以更好地收敛来完善点对应关系。我们通过使用来自城市场景的大区域的现实世界数据并将其与替代方法进行比较,从而广泛评估所提出的SARNET。该代码可在https://github.com/wintercodeforeverything/sarnet上找到。
translated by 谷歌翻译
点云识别是工业机器人和自主驾驶中的重要任务。最近,几个点云处理模型已经实现了最先进的表演。然而,这些方法缺乏旋转稳健性,并且它们的性能严重降低了随机旋转,未能扩展到具有不同方向的现实情景。为此,我们提出了一种名为基于自行轮廓的转换(SCT)的方法,该方法可以灵活地集成到针对任意旋转的各种现有点云识别模型中。 SCT通过引入轮廓感知的转换(CAT)提供有效的旋转和翻译不变性,该转换(CAT)线性地将点数的笛卡尔坐标转换为翻译和旋转 - 不变表示。我们证明猫是一种基于理论分析的旋转和翻译不变的转换。此外,提出了帧对准模块来增强通过捕获轮廓并将基于自平台的帧转换为帧内帧来增强鉴别特征提取。广泛的实验结果表明,SCT在合成和现实世界基准的有效性和效率的任意旋转下表现出最先进的方法。此外,稳健性和一般性评估表明SCT是稳健的,适用于各种点云处理模型,它突出了工业应用中SCT的优势。
translated by 谷歌翻译
位置识别是自动驾驶汽车实现循环结束或全球本地化的重要组成部分。在本文中,我们根据机上激光雷达传感器获得的顺序3D激光扫描解决了位置识别问题。我们提出了一个名为SEQOT的基于变压器的网络,以利用由LIDAR数据生成的顺序范围图像提供的时间和空间信息。它使用多尺度变压器以端到端的方式为每一个LiDAR范围图像生成一个全局描述符。在线操作期间,我们的SEQOT通过在当前查询序列和地图中存储的描述符之间匹配此类描述符来找到相似的位置。我们在不同类型的不同环境中使用不同类型的LIDAR传感器收集的四个数据集评估了我们的方法。实验结果表明,我们的方法优于最新的基于激光痛的位置识别方法,并在不同环境中概括了。此外,我们的方法比传感器的帧速率更快地在线运行。我们的方法的实现以开放源形式发布,网址为:https://github.com/bit-mjy/seqot。
translated by 谷歌翻译
Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel endto-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-theart robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https: //github.com/yanx27/PointASNL.
translated by 谷歌翻译
循环闭合检测是同时定位和映射(SLAM)系统的重要组成部分,这减少了随时间累积的漂移。多年来,已经提出了一些深入的学习方法来解决这项任务,但是与手工制作技术相比,他们的表现一直是SubPar,特别是在处理反向环的同时。在本文中,我们通过同时识别先前访问的位置并估计当前扫描与地图之间的6-DOF相对变换,有效地检测LIDAR点云中的LINAS点云中的环闭环的新颖LCDNET。 LCDNET由共享编码器组成,一个地方识别头提取全局描述符,以及估计两个点云之间的变换的相对姿势头。我们基于不平衡的最佳运输理论介绍一种新颖的相对姿势,我们以可分散的方式实现,以便实现端到端训练。在多个现实世界自主驾驶数据集中的LCDNET广泛评估表明我们的方法优于最先进的环路闭合检测和点云登记技术,特别是在处理反向环的同时。此外,我们将所提出的循环闭合检测方法集成到LIDAR SLAM库中,以提供完整的映射系统,并在看不见的城市中使用不同的传感器设置展示泛化能力。
translated by 谷歌翻译
基于LIDAR的位置识别是环路闭合检测和全局重川化的必要和具有挑战性的任务。我们提出了深度扫描上下文(DSC),一般和辨别的全局描述符,捕获点云的段之间的关系。与以前的方法或相邻点云的序列进行以获得更好的地方识别,我们只使用原始点云来获得竞争结果。具体而言,我们首先将点云分段为摄影云,以获取细分的质心和特征值。然后,我们介绍一个图形神经网络,将这些功能聚合到嵌入式表示中。在基提数据集上进行的广泛实验表明,DSC对场景变体具有强大,优于现有方法。
translated by 谷歌翻译
基于激光雷达的本地化方法是用于大规模导航任务的基本模块,例如最后一英里交付和自动驾驶,并且本地化鲁棒性高度依赖于观点和3D功能提取。我们以前的工作提供了一个观点不变的描述符来处理观点差异;但是,全局描述符在无监督聚类中的信号噪声比率低,从而降低了可区分的特征提取能力。我们开发了SphereVlad ++,这是这项工作中一种引起注意的观点不变的位置识别方法。 SphereVlad ++在每个唯一区域的球形视角上投射点云,并通过全局3D几何分布捕获本地特征及其依赖关系之间的上下文连接。作为回报,全局描述符中的群集元素以本地和全球几何形式为条件,并支持SphereVlad的原始视点不变属性。在实验中,我们评估了SphereVlad ++在匹兹堡市的公共Kitti360数据集和自我生成的数据集上的本地化性能。实验结果表明,SphereVlad ++在小甚至完全逆转的视点差异下优于所有相对最新的3D位置识别方法,并显示0.69%和15.81%的成功检索率,比第二好的检索率更好。低计算要求和高时间效率也有助于其用于低成本机器人的应用。
translated by 谷歌翻译
学习3D点云的新表示形式是3D视觉中的一个活跃研究领域,因为订单不变的点云结构仍然对神经网络体系结构的设计构成挑战。最近的作品探索了学习全球或本地功能或两者兼而有之,但是均未通过分析点的局部方向分布来捕获上下文形状信息的早期方法。在本文中,我们利用点附近的点方向分布,以获取点云的表现力局部邻里表示。我们通过将给定点的球形邻域分为预定义的锥体来实现这一目标,并将每个体积内部的统计数据用作点特征。这样,本地贴片不仅可以由所选点的最近邻居表示,还可以考虑沿该点周围多个方向定义的点密度分布。然后,我们能够构建涉及依赖MLP(多层感知器)层的Odfblock的方向分布函数(ODF)神经网络。新的ODFNET模型可实现ModelNet40和ScanObjectNN数据集的对象分类的最新精度,并在Shapenet S3DIS数据集上进行分割。
translated by 谷歌翻译
The irregular domain and lack of ordering make it challenging to design deep neural networks for point cloud processing. This paper presents a novel framework named Point Cloud Transformer(PCT) for point cloud learning. PCT is based on Transformer, which achieves huge success in natural language processing and displays great potential in image processing. It is inherently permutation invariant for processing a sequence of points, making it well-suited for point cloud learning. To better capture local context within the point cloud, we enhance input embedding with the support of farthest point sampling and nearest neighbor search. Extensive experiments demonstrate that the PCT achieves the state-of-the-art performance on shape classification, part segmentation, semantic segmentation and normal estimation tasks.
translated by 谷歌翻译