我们描述了一种新的方法,该方法是基于与高级隐式语义特征的低级颜色和几何特征的汇总颜色和几何特征的室内识别。它使用了一个2阶段的深度学习框架,其中第一阶段经过了语义分割的辅助任务的训练,第二阶段的第二阶段使用了第一阶段的层中的特征来生成区分描述符以进行位置识别。辅助任务鼓励这些功能在语义上有意义,因此将RGB点云数据中的几何形状和颜色汇总为具有隐式语义信息。我们使用从扫描仪数据集派生的室内识别数据集进行培训和评估,其中一个包括由100个不同房间生成的3,608点云的测试集。与传统的基于功能的方法和四种最先进的深度学习方法进行比较表明,我们的方法显着优于所有五种方法,例如,取得前3名平均召回率为75%,而41%的平均召回率为41%最接近的竞争对手方法。我们的代码可在以下网址找到:https://github.com/yuhangming/semantic-indoor-place-recognition
translated by 谷歌翻译
大规模的地方认可是一项基本但具有挑战性的任务,在自主驾驶和机器人技术中起着越来越重要的作用。现有的方法已经达到了可接受的良好性能,但是,其中大多数都集中精力设计精美的全球描述符学习网络结构。长期以来忽略了特征概括和描述后的特征概括和描述符的重要性。在这项工作中,我们提出了一种名为GIDP的新方法,以学习良好的初始化并引起描述符,以供大规模识别。特别是,在GIDP中分别提出了无监督的动量对比度云预处理模块和基于重新的描述符后增强模块。前者旨在在训练位置识别模型之前对Point Cloud编码网络进行良好的初始化,而后来的目标是通过推理时间重新掌握预测的全局描述符。在室内和室外数据集上进行的广泛实验表明,我们的方法可以使用简单和一般的点云编码主干来实现最先进的性能。
translated by 谷歌翻译
近年来,在各种环境中,在城市道路,大型建筑物等各种环境中越来越多的应用,以及室内和户外场所。然而,由于不同传感器的局限性和环境的外观变化,这项任务仍然仍然具有挑战性。目前的作用仅考虑使用各个传感器,或者只是结合不同的传感器,忽略不同传感器的重要性随着环境变化而变化的事实。本文提出了一种名为Adafusion的自适应加权视觉激光融合方法,以了解图像和点云特征的权重。因此,这两个模式的特征根据当前的环境情况不同地贡献。通过网络的注意分支实现权重的学习,然后与多模态特征提取分支融合。此外,为了更好地利用图像和点云之间的潜在关系,我们设计一个突变融合方法来组合2D和3D关注。我们的工作在两个公共数据集上进行了测试,实验表明,自适应权重有助于提高识别准确性和系统鲁棒性与不同的环境。
translated by 谷歌翻译
对于许多应用程序,例如同时本地化和映射(SLAM),基于点云的大规模识别是一项重要但具有挑战性的任务。以任务为云检索问题,以前的方法取得了令人愉快的成就。但是,如何处理由旋转问题引起的灾难性崩溃仍然不足。在本文中,为了解决这个问题,我们提出了一个基于点云的新型旋转型大型位置识别网络(RPR-NET)。特别是,为了解决问题,我们建议分三个步骤学习旋转不变的功能。首先,我们设计了三种新型的旋转不变特征(RIF),它们是可以保持旋转不变属性的低级特征。其次,使用这些Rifs,我们设计了一个细心的模块来学习旋转不变的内核。第三,我们将这些内核应用于先前的点云功能,以生成新功能,这是众所周知的SO(3)映射过程。通过这样做,可以学习高级场景特定的旋转不变功能。我们将上述过程称为细心的旋转不变卷积(ARICONV)。为了实现位置识别目标,我们构建了RPR-NET,它将Ariconv作为构建密集网络体系结构的基本单元。然后,可以从RPR-NET中充分提取用于基于检索的位置识别的强大全局描述符。普遍数据​​集的实验结果表明,我们的方法可以在解决旋转问题时显着优于现有的最新位置识别模型的可比结果,并显着优于其他旋转不变的基线模型。
translated by 谷歌翻译
Visual localization plays an important role for intelligent robots and autonomous driving, especially when the accuracy of GNSS is unreliable. Recently, camera localization in LiDAR maps has attracted more and more attention for its low cost and potential robustness to illumination and weather changes. However, the commonly used pinhole camera has a narrow Field-of-View, thus leading to limited information compared with the omni-directional LiDAR data. To overcome this limitation, we focus on correlating the information of 360 equirectangular images to point clouds, proposing an end-to-end learnable network to conduct cross-modal visual localization by establishing similarity in high-dimensional feature space. Inspired by the attention mechanism, we optimize the network to capture the salient feature for comparing images and point clouds. We construct several sequences containing 360 equirectangular images and corresponding point clouds based on the KITTI-360 dataset and conduct extensive experiments. The results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
基于激光雷达的位置识别是自动驾驶汽车和机器人应用程序中全球本地化的关键组成部分之一。随着DL方法在从3D激光雷达的学习有用信息方面的成功中,Place识别也从这种方式中受益,这导致了更高的重新定位和循环闭合检测性能,尤其是在具有重大变化条件的环境中。尽管在该领域取得了进展,但从3D激光雷达数据中提取适当有效的描述符,这些数据不变,而不断变化的条件和方向仍然是未解决的挑战。为了解决这个问题,这项工作提出了一个基于3D激光雷达的新型深度学习网络(名为ATTDLNET),该网络使用基于范围的代理表示点云和具有堆叠注意力层的注意力网络,以选择性地专注于远程上下文和Inter Inter - 特征关系。在KITTI数据集中对拟议的网络进行了训练和验证,并提供了消融研究以评估新的注意力网络。结果表明,增加对网络的关注会提高性能,从而导致有效的循环封闭,并优于已建立的基于3D激光雷达的位置识别方法。从消融研究中,结果表明中间编码器层的平均性能最高,而更深的层对方向的变化更为强大。该代码可在https://github.com/cybonic/attdlnet上公开获取
translated by 谷歌翻译
Arguably one of the top success stories of deep learning is transfer learning. The finding that pre-training a network on a rich source set (e.g., ImageNet) can help boost performance once fine-tuned on a usually much smaller target set, has been instrumental to many applications in language and vision. Yet, very little is known about its usefulness in 3D point cloud understanding. We see this as an opportunity considering the effort required for annotating data in 3D. In this work, we aim at facilitating research on 3D representation learning. Different from previous works, we focus on high-level scene understanding tasks. To this end, we select a suite of diverse datasets and tasks to measure the effect of unsupervised pre-training on a large source set of 3D scenes. Our findings are extremely encouraging: using a unified triplet of architecture, source dataset, and contrastive loss for pre-training, we achieve improvement over recent best results in segmentation and detection across 6 different benchmarks for indoor and outdoor, real and synthetic datasets -demonstrating that the learned representation can generalize across domains. Furthermore, the improvement was similar to supervised pre-training, suggesting that future efforts should favor scaling data collection over more detailed annotation. We hope these findings will encourage more research on unsupervised pretext task design for 3D deep learning. Our code is publicly available at https://github.com/facebookresearch/PointContrast
translated by 谷歌翻译
由于激光雷达扫描数据的大规模,噪音和数据不完整,注册Urban Point Clouds是一项艰巨的任务。在本文中,我们提出了SARNET,这是一个新型的语义增强注册网络,旨在在城市规模上实现有效的城市点云的注册。与以前仅在点级空间中构建对应关系的方法不同,我们的方法完全利用语义特征来提高注册精度。具体而言,我们提取具有高级语义分割网络的每点语义标签,并构建先前的语义零件到部分对应关系。然后,我们将语义信息纳入基于学习的注册管道中,该管道由三个核心模块组成:基于语义的最远点采样模块,以有效地滤除异常值和动态对象;一个语义增强的特征提取模块,用于学习更多的判别点描述符;语义改制的转换估计模块,该模块利用先前的语义匹配作为掩码,通过减少错误匹配以更好地收敛来完善点对应关系。我们通过使用来自城市场景的大区域的现实世界数据并将其与替代方法进行比较,从而广泛评估所提出的SARNET。该代码可在https://github.com/wintercodeforeverything/sarnet上找到。
translated by 谷歌翻译
基于LIDAR的位置识别是环路闭合检测和全局重川化的必要和具有挑战性的任务。我们提出了深度扫描上下文(DSC),一般和辨别的全局描述符,捕获点云的段之间的关系。与以前的方法或相邻点云的序列进行以获得更好的地方识别,我们只使用原始点云来获得竞争结果。具体而言,我们首先将点云分段为摄影云,以获取细分的质心和特征值。然后,我们介绍一个图形神经网络,将这些功能聚合到嵌入式表示中。在基提数据集上进行的广泛实验表明,DSC对场景变体具有强大,优于现有方法。
translated by 谷歌翻译
随着激光雷达传感器和3D视觉摄像头的扩散,3D点云分析近年来引起了重大关注。经过先驱工作点的成功后,基于深度学习的方法越来越多地应用于各种任务,包括3D点云分段和3D对象分类。在本文中,我们提出了一种新颖的3D点云学习网络,通过选择性地执行具有动态池的邻域特征聚合和注意机制来提出作为动态点特征聚合网络(DPFA-NET)。 DPFA-Net有两个可用于三维云的语义分割和分类的变体。作为DPFA-NET的核心模块,我们提出了一个特征聚合层,其中每个点的动态邻域的特征通过自我注意机制聚合。与其他分割模型相比,来自固定邻域的聚合特征,我们的方法可以在不同层中聚合来自不同邻居的特征,在不同层中为查询点提供更具选择性和更广泛的视图,并更多地关注本地邻域中的相关特征。此外,为了进一步提高所提出的语义分割模型的性能,我们提出了两种新方法,即两级BF-Net和BF-Rengralization来利用背景前台信息。实验结果表明,所提出的DPFA-Net在S3DIS数据集上实现了最先进的整体精度分数,在S3DIS数据集上进行了语义分割,并在不同的语义分割,部分分割和3D对象分类中提供始终如一的令人满意的性能。与其他方法相比,它也在计算上更有效。
translated by 谷歌翻译
3D point clouds are rich in geometric structure information, while 2D images contain important and continuous texture information. Combining 2D information to achieve better 3D semantic segmentation has become mainstream in 3D scene understanding. Albeit the success, it still remains elusive how to fuse and process the cross-dimensional features from these two distinct spaces. Existing state-of-the-art usually exploit bidirectional projection methods to align the cross-dimensional features and realize both 2D & 3D semantic segmentation tasks. However, to enable bidirectional mapping, this framework often requires a symmetrical 2D-3D network structure, thus limiting the network's flexibility. Meanwhile, such dual-task settings may distract the network easily and lead to over-fitting in the 3D segmentation task. As limited by the network's inflexibility, fused features can only pass through a decoder network, which affects model performance due to insufficient depth. To alleviate these drawbacks, in this paper, we argue that despite its simplicity, projecting unidirectionally multi-view 2D deep semantic features into the 3D space aligned with 3D deep semantic features could lead to better feature fusion. On the one hand, the unidirectional projection enforces our model focused more on the core task, i.e., 3D segmentation; on the other hand, unlocking the bidirectional to unidirectional projection enables a deeper cross-domain semantic alignment and enjoys the flexibility to fuse better and complicated features from very different spaces. In joint 2D-3D approaches, our proposed method achieves superior performance on the ScanNetv2 benchmark for 3D semantic segmentation.
translated by 谷歌翻译
Raw point clouds data inevitably contains outliers or noise through acquisition from 3D sensors or reconstruction algorithms. In this paper, we present a novel endto-end network for robust point clouds processing, named PointASNL, which can deal with point clouds with noise effectively. The key component in our approach is the adaptive sampling (AS) module. It first re-weights the neighbors around the initial sampled points from farthest point sampling (FPS), and then adaptively adjusts the sampled points beyond the entire point cloud. Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers. To further capture the neighbor and long-range dependencies of the sampled point, we proposed a local-nonlocal (L-NL) module inspired by the nonlocal operation. Such L-NL module enables the learning process insensitive to noise. Extensive experiments verify the robustness and superiority of our approach in point clouds processing tasks regardless of synthesis data, indoor data, and outdoor data with or without noise. Specifically, PointASNL achieves state-of-theart robust performance for classification and segmentation tasks on all datasets, and significantly outperforms previous methods on real-world outdoor SemanticKITTI dataset with considerate noise. Our code is released through https: //github.com/yanx27/PointASNL.
translated by 谷歌翻译
本文使用基于实例分割和图形匹配的LIDAR点云进行了极强和轻量级的定位。我们将3D点云建模为在语义上识别的组件的完全连接图,每个顶点对应于对象实例并编码其形状。跨图的最佳顶点关联允许通过测量相似性进行完整的6度自由(DOF)姿势估计和放置识别。这种表示非常简洁,将地图的大小缩合为25倍,而最先进的图像仅需要3KB代表1.4MB激光扫描。我们验证了系统在Semantickitti数据集中的功效,在该数据集中,我们获得了新的最新识别,平均召回了88.4%的召回,而下一个最接近的竞争对手则为64.9%。我们还显示了准确的度量姿势估计性能 - 估计中位误差为10 cm和0.33度的6 -DOF姿势。
translated by 谷歌翻译
3D点云的卷积经过广泛研究,但在几何深度学习中却远非完美。卷积的传统智慧在3D点之间表现出特征对应关系,这是对差的独特特征学习的内在限制。在本文中,我们提出了自适应图卷积(AGCONV),以供点云分析的广泛应用。 AGCONV根据其动态学习的功能生成自适应核。与使用固定/各向同性核的解决方案相比,AGCONV提高了点云卷积的灵活性,有效,精确地捕获了不同语义部位的点之间的不同关系。与流行的注意力体重方案不同,AGCONV实现了卷积操作内部的适应性,而不是简单地将不同的权重分配给相邻点。广泛的评估清楚地表明,我们的方法优于各种基准数据集中的点云分类和分割的最新方法。同时,AGCONV可以灵活地采用更多的点云分析方法来提高其性能。为了验证其灵活性和有效性,我们探索了基于AGCONV的完成,DeNoing,Upsmpling,注册和圆圈提取的范式,它们与竞争对手相当甚至优越。我们的代码可在https://github.com/hrzhou2/adaptconv-master上找到。
translated by 谷歌翻译
3D语义分割的最新作品建议通过使用专用网络处理每种模式并将学习的2D功能投射到3D点上,从而利用图像和点云之间的协同作用。合并大规模点云和图像会引起几个挑战,例如在点和像素之间构建映射,以及在多个视图之间汇总特征。当前方法需要网格重建或专门传感器来恢复闭塞,并使用启发式方法选择和汇总可用的图像。相比之下,我们提出了一个可端到端的可训练的多视图聚合模型,该模型利用3D点的观看条件从任意位置拍摄的图像中合并特征。我们的方法可以结合标准2D和3D网络,并优于在有色点云和混合2D/3D网络上运行的3D模型,而无需进行着色,网格融化或真实的深度图。我们为S3DIS(74.7 MIOU 6倍)和Kitti-360(58.3 MIOU)设置了大型室内/室外语义细分的新最先进的。我们的完整管道可以在https://github.com/drprojects/deepviewagg上访问,并且仅需要原始的3D扫描以及一组图像和姿势。
translated by 谷歌翻译
在本文中,我们建议超越建立的基于视觉的本地化方法,该方法依赖于查询图像和3D点云之间的视觉描述符匹配。尽管通过视觉描述符匹配关键点使本地化高度准确,但它具有重大的存储需求,提出了隐私问题,并需要长期对描述符进行更新。为了优雅地应对大规模定位的实用挑战,我们提出了Gomatch,这是基于视觉的匹配的替代方法,仅依靠几何信息来匹配图像键点与地图的匹配,这是轴承矢量集。我们的新型轴承矢量表示3D点,可显着缓解基于几何的匹配中的跨模式挑战,这阻止了先前的工作在现实环境中解决本地化。凭借额外的仔细建筑设计,Gomatch在先前的基于几何的匹配工作中改善了(1067m,95.7升)和(1.43m,34.7摄氏度),平均中位数姿势错误,同时需要7个尺寸,同时需要7片。与最佳基于视觉的匹配方法相比,几乎1.5/1.7%的存储容量。这证实了其对现实世界本地化的潜力和可行性,并为不需要存储视觉描述符的城市规模的视觉定位方法打开了未来努力的大门。
translated by 谷歌翻译
我们介绍了PointConvormer,这是一个基于点云的深神经网络体系结构的新颖构建块。受到概括理论的启发,PointConvormer结合了点卷积的思想,其中滤波器权重仅基于相对位置,而变形金刚则利用了基于功能的注意力。在PointConvormer中,附近点之间的特征差异是重量重量卷积权重的指标。因此,我们从点卷积操作中保留了不变,而注意力被用来选择附近的相关点进行卷积。为了验证PointConvormer的有效性,我们在点云上进行了语义分割和场景流估计任务,其中包括扫描仪,Semantickitti,FlyingThings3D和Kitti。我们的结果表明,PointConvormer具有经典的卷积,常规变压器和Voxelized稀疏卷积方法的表现,具有较小,更高效的网络。可视化表明,PointConvormer的性能类似于在平面表面上的卷积,而邻域选择效果在物体边界上更强,表明它具有两全其美。
translated by 谷歌翻译
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
translated by 谷歌翻译
点云注册是许多应用程序(例如本地化,映射,跟踪和重建)的基本任务。成功的注册依赖于提取鲁棒和歧视性的几何特征。现有的基于学习的方法需要高计算能力来同时处理大量原始点。尽管这些方法取得了令人信服的结果,但由于高计算成本,它们很难在现实情况下应用。在本文中,我们介绍了一个框架,该框架使用图形注意网络有效地从经济上提取密集的特征,以进行点云匹配和注册(DFGAT)。 DFGAT的检测器负责在大型原始数据集中找到高度可靠的关键点。 DFGAT的描述符将这些关键点与邻居相结合,以提取不变的密度特征,以准备匹配。图形注意力网络使用了丰富点云之间关系的注意机制。最后,我们将其视为最佳运输问题,并使用Sinkhorn算法找到正匹配和负面匹配。我们对KITTI数据集进行了彻底的测试,并评估了该方法的有效性。结果表明,与其他最先进的方法相比,使用有效紧凑的关键点选择和描述可以实现最佳性能匹配指标,并达到99.88%注册的最高成功率。
translated by 谷歌翻译