基于LIDAR的位置识别是环路闭合检测和全局重川化的必要和具有挑战性的任务。我们提出了深度扫描上下文(DSC),一般和辨别的全局描述符,捕获点云的段之间的关系。与以前的方法或相邻点云的序列进行以获得更好的地方识别,我们只使用原始点云来获得竞争结果。具体而言,我们首先将点云分段为摄影云,以获取细分的质心和特征值。然后,我们介绍一个图形神经网络,将这些功能聚合到嵌入式表示中。在基提数据集上进行的广泛实验表明,DSC对场景变体具有强大,优于现有方法。
translated by 谷歌翻译
位置识别技术赋予了一种大满贯算法,具有消除累积错误并自身重新定位的能力。基于点云的位置识别的现有方法通常利用以激光雷达为中心的全局描述符的匹配。这些方法具有以下两个主要缺陷:当两个点云之间的距离很远时,不能执行位置识别,并且只能计算旋转角度,而无需在x和y方向上偏移。为了解决这两个问题,我们提出了一个新颖的全球描述符,该描述符围绕主要对象构建,以这种方式,描述符不再依赖于观察位置。我们分析了该方法可以完美地解决上述两个问题的理论,并在Kitti和一些极端情况下进行了许多实验,这表明我们的方法比传统方法具有明显的优势。
translated by 谷歌翻译
循环闭合检测是在复杂环境中长期机器人导航的关键技术。在本文中,我们提出了一个全局描述符,称为正态分布描述符(NDD),用于3D点云循环闭合检测。描述符编码点云的概率密度分数和熵作为描述符。我们还提出了快速旋转对准过程,并将相关系数用作描述符之间的相似性。实验结果表明,我们的方法在准确性和效率上都优于最新点云描述符。源代码可用,可以集成到现有的LIDAR射测和映射(壤土)系统中。
translated by 谷歌翻译
位置识别在机器人和车辆的重新定位和循环封闭检测任务中起着至关重要的作用。本文为基于激光雷达的位置识别寻求明确定义的全球描述符。与本地描述符相比,全球描述符在城市道路场景中表现出色,但通常依赖于观点。为此,我们提出了一个简单而坚固的全局描述符,称为壁画,通过利用傅立叶变换和圆形转移技术,可以分解重新访问期间的视点差异,并实现翻译和旋转不变性。此外,还提出了一种快速的两阶段姿势估计方法,以利用从场景中提取的紧凑型2D点云来估计位置回收后的相对姿势。实验表明,在来自多个数据集的不同场景的序列上,壁画表现出比同期方法表现出更好的性能。该代码将在https://github.com/soytony/fresco上公开获取。
translated by 谷歌翻译
本文使用基于实例分割和图形匹配的LIDAR点云进行了极强和轻量级的定位。我们将3D点云建模为在语义上识别的组件的完全连接图,每个顶点对应于对象实例并编码其形状。跨图的最佳顶点关联允许通过测量相似性进行完整的6度自由(DOF)姿势估计和放置识别。这种表示非常简洁,将地图的大小缩合为25倍,而最先进的图像仅需要3KB代表1.4MB激光扫描。我们验证了系统在Semantickitti数据集中的功效,在该数据集中,我们获得了新的最新识别,平均召回了88.4%的召回,而下一个最接近的竞争对手则为64.9%。我们还显示了准确的度量姿势估计性能 - 估计中位误差为10 cm和0.33度的6 -DOF姿势。
translated by 谷歌翻译
我们介绍了一种简单而有效的方法,可以使用本地3D深度描述符(L3DS)同时定位和映射解决循环闭合检测。 L3DS正在采用深度学习算法从数据从数据中学到的点云提取的斑块的紧凑型表示。通过在通过其估计的相对姿势向循环候选点云登记之后计算对应于相互最近邻接描述符的点之间的度量误差,提出了一种用于循环检测的新颖重叠度量。这种新方法使我们能够在小重叠的情况下精确地检测环并估计六个自由度。我们将基于L3D的循环闭合方法与最近的LIDAR数据的方法进行比较,实现最先进的环路闭合检测精度。此外,我们嵌入了我们在最近的基于边缘的SLAM系统中的循环闭合方法,并对现实世界RGBD-TUM和合成ICL数据集进行了评估。与其原始环路闭合策略相比,我们的方法能够实现更好的本地化准确性。
translated by 谷歌翻译
循环结束是自动移动系统同时本地化和映射(SLAM)的基本组成部分。在视觉大满贯领域,单词袋(弓)在循环封闭方面取得了巨大的成功。循环搜索的弓特征也可以在随后的6-DOF环校正中使用。但是,对于3D激光雷达的猛击,最新方法可能无法实时识别循环,并且通常无法纠正完整的6-DOF回路姿势。为了解决这一限制,我们呈现了一袋新颖的单词,以实时循环在3D LIDAR大满贯中关闭,称为Bow3D。我们方法的新颖性在于,它不仅有效地识别了重新审视的环路,而且还实时纠正了完整的6型循环姿势。 BOW3D根据3D功能link3D构建单词袋,该链接有效,姿势不变,可用于准确的点对点匹配。我们将我们提出的方法嵌入了3D激光射击系统中,以评估循环闭合性能。我们在公共数据集上测试我们的方法,并将其与其他最先进的算法进行比较。在大多数情况下,BOW3D在F1 MAX和扩展精度分数方面表现出更好的性能,并具有出色的实时性能。值得注意的是,BOW3D平均需要50毫秒才能识别和纠正Kitti 00中的循环(包括4K+ 64射线激光扫描),当在使用Intel Core i7 @2.2 GHz处理器的笔记本上执行时。
translated by 谷歌翻译
特征提取和匹配是许多计算机视觉任务的基本部分,例如2D或3D对象检测,识别和注册。众所周知,2D功能提取和匹配已经取得了巨大的成功。不幸的是,在3D领域,由于描述性和效率低下,目前的方法无法支持3D激光雷达传感器在视觉任务中的广泛应用。为了解决此限制,我们提出了一种新颖的3D特征表示方法:3D激光点云的线性关键点表示,称为link3d。 Link3D的新颖性在于它完全考虑了LiDar Point Cloud的特征(例如稀疏性,场景的复杂性),并用其强大的邻居键盘来表示当前关键点,从而对当前关键点的描述提供了强烈的约束。提出的链接3D已在两个公共数据集(即Kitti,Steven VLP16)上进行了评估,实验结果表明,我们的方法在匹配性能方面的最先进表现都大大优于最先进的方法。更重要的是,Link3D显示出出色的实时性能(基于LIDAR的频率10 Hz)。 Link3D平均仅需32毫秒即可从64射线激光束收集的点云中提取功能,并且仅需大约8毫秒即可匹配两次LIDAR扫描,当时用Intel Core i7 @2.2 GHz处理器执行笔记本。此外,我们的方法可以广泛扩展到各种3D视觉应用。在本文中,我们已将Link3D应用于3D注册,LiDAR ODOMETIRE和放置识别任务,并与最先进的方法相比实现了竞争成果。
translated by 谷歌翻译
基于激光雷达的位置识别是自动驾驶汽车和机器人应用程序中全球本地化的关键组成部分之一。随着DL方法在从3D激光雷达的学习有用信息方面的成功中,Place识别也从这种方式中受益,这导致了更高的重新定位和循环闭合检测性能,尤其是在具有重大变化条件的环境中。尽管在该领域取得了进展,但从3D激光雷达数据中提取适当有效的描述符,这些数据不变,而不断变化的条件和方向仍然是未解决的挑战。为了解决这个问题,这项工作提出了一个基于3D激光雷达的新型深度学习网络(名为ATTDLNET),该网络使用基于范围的代理表示点云和具有堆叠注意力层的注意力网络,以选择性地专注于远程上下文和Inter Inter - 特征关系。在KITTI数据集中对拟议的网络进行了训练和验证,并提供了消融研究以评估新的注意力网络。结果表明,增加对网络的关注会提高性能,从而导致有效的循环封闭,并优于已建立的基于3D激光雷达的位置识别方法。从消融研究中,结果表明中间编码器层的平均性能最高,而更深的层对方向的变化更为强大。该代码可在https://github.com/cybonic/attdlnet上公开获取
translated by 谷歌翻译
基于图形的大量系统的关键组成部分是能够检测轨迹中的环闭合以减少从探视法累积的漂移。大多数基于激光雷达的方法仅通过仅使用几何信息来实现此目标,而无视场景的语义。在这项工作中,我们介绍了Padloc,这是一种基于激光雷达的环路闭合检测和注册体系结构,其中包括共享的3D卷积特征提取主链,用于环路闭合检测的全局描述符,以及用于点云匹配和注册的新型变压器头。我们提出了多种方法,用于估计基于多样性指数的点匹配置信度。此外,为了提高前向后的一致性,我们建议使用两个共享匹配和注册头,并通过利用估计的相对转换必须相互倒数来交换其源和目标输入。此外,我们以新颖的损失函数的形式利用综合信息在培训期间,将匹配问题折叠为语义标签的分类任务,并作为实例标签的图形连接分配。我们在多个现实世界数据集上对PADLOC进行了广泛的评估,证明它可以实现最新的性能。我们的工作代码可在http://padloc.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
循环闭合检测是同时定位和映射(SLAM)系统的重要组成部分,这减少了随时间累积的漂移。多年来,已经提出了一些深入的学习方法来解决这项任务,但是与手工制作技术相比,他们的表现一直是SubPar,特别是在处理反向环的同时。在本文中,我们通过同时识别先前访问的位置并估计当前扫描与地图之间的6-DOF相对变换,有效地检测LIDAR点云中的LINAS点云中的环闭环的新颖LCDNET。 LCDNET由共享编码器组成,一个地方识别头提取全局描述符,以及估计两个点云之间的变换的相对姿势头。我们基于不平衡的最佳运输理论介绍一种新颖的相对姿势,我们以可分散的方式实现,以便实现端到端训练。在多个现实世界自主驾驶数据集中的LCDNET广泛评估表明我们的方法优于最先进的环路闭合检测和点云登记技术,特别是在处理反向环的同时。此外,我们将所提出的循环闭合检测方法集成到LIDAR SLAM库中,以提供完整的映射系统,并在看不见的城市中使用不同的传感器设置展示泛化能力。
translated by 谷歌翻译
位置识别是自动驾驶汽车实现循环结束或全球本地化的重要组成部分。在本文中,我们根据机上激光雷达传感器获得的顺序3D激光扫描解决了位置识别问题。我们提出了一个名为SEQOT的基于变压器的网络,以利用由LIDAR数据生成的顺序范围图像提供的时间和空间信息。它使用多尺度变压器以端到端的方式为每一个LiDAR范围图像生成一个全局描述符。在线操作期间,我们的SEQOT通过在当前查询序列和地图中存储的描述符之间匹配此类描述符来找到相似的位置。我们在不同类型的不同环境中使用不同类型的LIDAR传感器收集的四个数据集评估了我们的方法。实验结果表明,我们的方法优于最新的基于激光痛的位置识别方法,并在不同环境中概括了。此外,我们的方法比传感器的帧速率更快地在线运行。我们的方法的实现以开放源形式发布,网址为:https://github.com/bit-mjy/seqot。
translated by 谷歌翻译
由于点云数据的稀缺性质,在大规模环境中使用激光雷达识别使用激光雷达的地方是具有挑战性的。在本文中,我们提出了BVMATCH,基于LIDAR的帧到帧位置识别框架,其能够估计2D相对姿势。基于地面区域可以近似作为平面的假设,我们将地面区域统一地分散到网格和项目3D LIDAR扫描到鸟瞰图(BV)图像。我们进一步使用了一组Log-Gabor过滤器来构建一个最大索引图(MIM),用于编码图像中结构的方向信息。我们从理论上分析MIM的方向特征,并引入了一种名为鸟瞰图特征变换(BVFT)的新颖描述符。所提出的BVFT对BV图像的旋转和强度变化不敏感。利用BVFT描述符,统一LIDAR将识别和将估算任务统一到BVMATCT框架中。在三个大规模数据集上进行的实验表明,BVMATCH在召回的位置识别和姿势估计精度的召回速率方面优于最先进的方法。
translated by 谷歌翻译
电线杆和建筑物边缘经常是城市道路上可观察到的对象,为各种计算机视觉任务提供了可靠的提示。为了重复提取它们作为特征并在离散激光镜头框架之间进行注册,我们提出了第一个基于学习的功能分割和LIDAR点云中3D线的描述模型。为了训练我们的模型,而无需耗时和乏味的数据标记过程,我们首先生成了目标线基本外观的合成原始图,并构建一个迭代线自动标记的过程,以逐步完善真实激光扫描的线路标签。我们的分割模型可以在任意规模的扰动下提取线,我们使用共享的EDGECONV编码层共同训练两个分割和描述符头。基于模型,我们可以在没有初始转换提示的情况下构建一个高度可用的全局注册模块,用于点云注册。实验表明,我们基于线的注册方法对基于最先进的方法的方法具有很高的竞争力。我们的代码可在https://github.com/zxrzju/superline3d.git上找到。
translated by 谷歌翻译
在这项工作中,我们介绍了一个新颖的全球描述符,称为3D位置识别的稳定三角形描述符(STD)。对于一个三角形,其形状由侧面或包含角度的长度唯一决定。此外,三角形的形状对于刚性转换完全不变。基于此属性,我们首先设计了一种算法,以从3D点云中有效提取本地密钥点,并将这些关键点编码为三角形描述符。然后,通过匹配点云之间描述符的侧面长度(以及其他一些信息)来实现位置识别。从描述符匹配对获得的点对应关系可以在几何验证中进一步使用,从而大大提高了位置识别的准确性。在我们的实验中,我们将我们提出的系统与公共数据集(即Kitti,NCLT和Complex-ublan)和我们自我收集的数据集(即M2DP,扫描上下文)进行了广泛的比较(即M2DP,扫描上下文)(即带有非重复扫描固态激光雷达)。所有定量结果表明,性病具有更强的适应性,并且在其对应物方面的精度有了很大的提高。为了分享我们的发现并为社区做出贡献,我们在GitHub上开放代码:https://github.com/hku-mars/std。
translated by 谷歌翻译
最近的3D注册方法可以有效处理大规模或部分重叠的点对。然而,尽管具有实用性,但在空间尺度和密度方面与不平衡对匹配。我们提出了一种新颖的3D注册方法,称为uppnet,用于不平衡点对。我们提出了一个层次结构框架,通过逐渐减少搜索空间,可以有效地找到近距离的对应关系。我们的方法预测目标点的子区域可能与查询点重叠。以下超点匹配模块和细粒度的细化模块估计两个点云之间的准确对应关系。此外,我们应用几何约束来完善满足空间兼容性的对应关系。对应性预测是对端到端训练的,我们的方法可以通过单个前向通行率预测适当的刚体转换,并给定点云对。为了验证提出方法的疗效,我们通过增强Kitti LiDAR数据集创建Kitti-UPP数据集。该数据集的实验表明,所提出的方法显着优于最先进的成对点云注册方法,而当目标点云大约为10 $ \ times $ higation时,注册召回率的提高了78%。比查询点云大约比查询点云更密集。
translated by 谷歌翻译
我们提出Automerge,这是一种LIDAR数据处理框架,用于将大量地图段组装到完整的地图中。传统的大规模地图合并方法对于错误的数据关联是脆弱的,并且主要仅限于离线工作。 Automerge利用多观点的融合和自适应环路闭合检测来进行准确的数据关联,并且它使用增量合并来从随机顺序给出的单个轨迹段组装大图,没有初始估计。此外,在组装段后,自动制度可以执行良好的匹配和姿势图片优化,以在全球范围内平滑合并的地图。我们展示了城市规模合并(120公里)和校园规模重复合并(4.5公里x 8)的汽车。该实验表明,自动化(i)在段检索中超过了第二和第三最佳方法的14%和24%的召回,(ii)在120 km大尺度地图组件(III)中实现了可比较的3D映射精度,IT对于暂时的重新审视是强大的。据我们所知,Automerge是第一种映射方法,它可以在无GPS的帮助下合并数百公里的单个细分市场。
translated by 谷歌翻译
点云注册是许多应用程序(例如本地化,映射,跟踪和重建)的基本任务。成功的注册依赖于提取鲁棒和歧视性的几何特征。现有的基于学习的方法需要高计算能力来同时处理大量原始点。尽管这些方法取得了令人信服的结果,但由于高计算成本,它们很难在现实情况下应用。在本文中,我们介绍了一个框架,该框架使用图形注意网络有效地从经济上提取密集的特征,以进行点云匹配和注册(DFGAT)。 DFGAT的检测器负责在大型原始数据集中找到高度可靠的关键点。 DFGAT的描述符将这些关键点与邻居相结合,以提取不变的密度特征,以准备匹配。图形注意力网络使用了丰富点云之间关系的注意机制。最后,我们将其视为最佳运输问题,并使用Sinkhorn算法找到正匹配和负面匹配。我们对KITTI数据集进行了彻底的测试,并评估了该方法的有效性。结果表明,与其他最先进的方法相比,使用有效紧凑的关键点选择和描述可以实现最佳性能匹配指标,并达到99.88%注册的最高成功率。
translated by 谷歌翻译
对于许多应用程序,例如同时本地化和映射(SLAM),基于点云的大规模识别是一项重要但具有挑战性的任务。以任务为云检索问题,以前的方法取得了令人愉快的成就。但是,如何处理由旋转问题引起的灾难性崩溃仍然不足。在本文中,为了解决这个问题,我们提出了一个基于点云的新型旋转型大型位置识别网络(RPR-NET)。特别是,为了解决问题,我们建议分三个步骤学习旋转不变的功能。首先,我们设计了三种新型的旋转不变特征(RIF),它们是可以保持旋转不变属性的低级特征。其次,使用这些Rifs,我们设计了一个细心的模块来学习旋转不变的内核。第三,我们将这些内核应用于先前的点云功能,以生成新功能,这是众所周知的SO(3)映射过程。通过这样做,可以学习高级场景特定的旋转不变功能。我们将上述过程称为细心的旋转不变卷积(ARICONV)。为了实现位置识别目标,我们构建了RPR-NET,它将Ariconv作为构建密集网络体系结构的基本单元。然后,可以从RPR-NET中充分提取用于基于检索的位置识别的强大全局描述符。普遍数据​​集的实验结果表明,我们的方法可以在解决旋转问题时显着优于现有的最新位置识别模型的可比结果,并显着优于其他旋转不变的基线模型。
translated by 谷歌翻译
我们描述了一种新的方法,该方法是基于与高级隐式语义特征的低级颜色和几何特征的汇总颜色和几何特征的室内识别。它使用了一个2阶段的深度学习框架,其中第一阶段经过了语义分割的辅助任务的训练,第二阶段的第二阶段使用了第一阶段的层中的特征来生成区分描述符以进行位置识别。辅助任务鼓励这些功能在语义上有意义,因此将RGB点云数据中的几何形状和颜色汇总为具有隐式语义信息。我们使用从扫描仪数据集派生的室内识别数据集进行培训和评估,其中一个包括由100个不同房间生成的3,608点云的测试集。与传统的基于功能的方法和四种最先进的深度学习方法进行比较表明,我们的方法显着优于所有五种方法,例如,取得前3名平均召回率为75%,而41%的平均召回率为41%最接近的竞争对手方法。我们的代码可在以下网址找到:https://github.com/yuhangming/semantic-indoor-place-recognition
translated by 谷歌翻译