Visual localization plays an important role for intelligent robots and autonomous driving, especially when the accuracy of GNSS is unreliable. Recently, camera localization in LiDAR maps has attracted more and more attention for its low cost and potential robustness to illumination and weather changes. However, the commonly used pinhole camera has a narrow Field-of-View, thus leading to limited information compared with the omni-directional LiDAR data. To overcome this limitation, we focus on correlating the information of 360 equirectangular images to point clouds, proposing an end-to-end learnable network to conduct cross-modal visual localization by establishing similarity in high-dimensional feature space. Inspired by the attention mechanism, we optimize the network to capture the salient feature for comparing images and point clouds. We construct several sequences containing 360 equirectangular images and corresponding point clouds based on the KITTI-360 dataset and conduct extensive experiments. The results demonstrate the effectiveness of our approach.
translated by 谷歌翻译
近年来,在各种环境中,在城市道路,大型建筑物等各种环境中越来越多的应用,以及室内和户外场所。然而,由于不同传感器的局限性和环境的外观变化,这项任务仍然仍然具有挑战性。目前的作用仅考虑使用各个传感器,或者只是结合不同的传感器,忽略不同传感器的重要性随着环境变化而变化的事实。本文提出了一种名为Adafusion的自适应加权视觉激光融合方法,以了解图像和点云特征的权重。因此,这两个模式的特征根据当前的环境情况不同地贡献。通过网络的注意分支实现权重的学习,然后与多模态特征提取分支融合。此外,为了更好地利用图像和点云之间的潜在关系,我们设计一个突变融合方法来组合2D和3D关注。我们的工作在两个公共数据集上进行了测试,实验表明,自适应权重有助于提高识别准确性和系统鲁棒性与不同的环境。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
图像和点云为机器人提供了不同的信息。从不同传感器中找到数据之间的对应关系对于各种任务,例如本地化,映射和导航至关重要。基于学习的描述符已为单个传感器开发;跨模式功能几乎没有工作。这项工作将学习跨模式特征视为一个密集的对比度学习问题。我们为跨模式特征学习提出了元组圆损失函数。此外,为了学习良好的功能而不是失去普遍性,我们开发了用于点云和U-NET CNN体系结构的广泛使用的PointNet ++架构的变体。此外,我们在现实世界数据集上进行实验,以显示损失函数和网络结构的有效性。我们表明,我们的模型确实通过可视化功能从图像和激光雷达学习信息。
translated by 谷歌翻译
循环闭合检测是同时定位和映射(SLAM)系统的重要组成部分,这减少了随时间累积的漂移。多年来,已经提出了一些深入的学习方法来解决这项任务,但是与手工制作技术相比,他们的表现一直是SubPar,特别是在处理反向环的同时。在本文中,我们通过同时识别先前访问的位置并估计当前扫描与地图之间的6-DOF相对变换,有效地检测LIDAR点云中的LINAS点云中的环闭环的新颖LCDNET。 LCDNET由共享编码器组成,一个地方识别头提取全局描述符,以及估计两个点云之间的变换的相对姿势头。我们基于不平衡的最佳运输理论介绍一种新颖的相对姿势,我们以可分散的方式实现,以便实现端到端训练。在多个现实世界自主驾驶数据集中的LCDNET广泛评估表明我们的方法优于最先进的环路闭合检测和点云登记技术,特别是在处理反向环的同时。此外,我们将所提出的循环闭合检测方法集成到LIDAR SLAM库中,以提供完整的映射系统,并在看不见的城市中使用不同的传感器设置展示泛化能力。
translated by 谷歌翻译
位置识别是可以协助同时定位和映射(SLAM)进行循环闭合检测和重新定位以进行长期导航的基本模块。在过去的20美元中,该地点认可社区取得了惊人的进步,这吸引了在计算机视觉和机器人技术等多个领域的广泛研究兴趣和应用。但是,在复杂的现实世界情景中,很少有方法显示出有希望的位置识别性能,在复杂的现实世界中,长期和大规模的外观变化通常会导致故障。此外,在最先进的方法之间缺乏集成框架,可以应对所有挑战,包括外观变化,观点差异,对未知区域的稳健性以及现实世界中的效率申请。在这项工作中,我们调查针对长期本地化并讨论未来方向和机会的最先进方法。首先,我们研究了长期自主权中的位置识别以及在现实环境中面临的主要挑战。然后,我们回顾了最新的作品,以应对各种位置识别挑战的不同传感器方式和当前的策略的认可。最后,我们回顾了现有的数据集以进行长期本地化,并为不同的方法介绍了我们的数据集和评估API。本文可以成为该地点识别界新手的研究人员以及关心长期机器人自主权的研究人员。我们还对机器人技术中的常见问题提供了意见:机器人是否需要准确的本地化来实现长期自治?这项工作以及我们的数据集和评估API的摘要可向机器人社区公开,网址为:https://github.com/metaslam/gprs。
translated by 谷歌翻译
在本文中,我们介绍了一种新的端到端学习的LIDAR重新定位框架,被称为Pointloc,其仅使用单点云直接姿势作为输入,不需要预先构建的地图。与RGB基于图像的重建化相比,LIDAR帧可以提供有关场景的丰富和强大的几何信息。然而,LIDAR点云是无序的并且非结构化,使得难以为此任务应用传统的深度学习回归模型。我们通过提出一种具有自我关注的小说点风格架构来解决这个问题,从而有效地估计660 {\ DEG} LIDAR输入框架的6-DOF姿势。关于最近发布的巨大恐怖雷达机器人数据集和现实世界机器人实验的扩展实验表明ProposedMethod可以实现准确的重定位化性能。
translated by 谷歌翻译
随着自动驾驶行业正在缓慢成熟,视觉地图本地化正在迅速成为尽可能准确定位汽车的标准方法。由于相机或激光镜等视觉传感器返回的丰富数据,研究人员能够构建具有各种细节的不同类型的地图,并使用它们来实现高水平的车辆定位准确性和在城市环境中的稳定性。与流行的SLAM方法相反,视觉地图本地化依赖于预先构建的地图,并且仅通过避免误差积累或漂移来提高定位准确性。我们将视觉地图定位定义为两个阶段的过程。在位置识别的阶段,通过将视觉传感器输出与一组地理标记的地图区域进行比较,可以确定车辆在地图中的初始位置。随后,在MAP指标定位的阶段,通过连续将视觉传感器的输出与正在遍历的MAP的当前区域进行对齐,对车辆在地图上移动时进行了跟踪。在本文中,我们调查,讨论和比较两个阶段的基于激光雷达,基于摄像头和跨模式的视觉图本地化的最新方法,以突出每种方法的优势。
translated by 谷歌翻译
3D LIDAR地点识别旨在基于来自旋转3D LIDAR传感器的单个扫描来估计先前看到的环境中的粗糙定位。此问题的现有解决方案包括手工制作点云描述符(例如,Scancontext,M2DP,LIDAR IRIS)和基于深度学习的解决方案(例如,PointNetvlad,PCAN,LPDNET,DAGC,MinkLoC3D)通常仅在累积时进行评估2D来自牛津机器人数据集的扫描。我们介绍了Minkloc3d-Si,一种基于稀疏的基于卷积的解决方案,它利用3D点的球形坐标并处理3D LIDAR测量的强度,提高使用单个3D LIDAR扫描时的性能。我们的方法通过最有效的3D稀疏卷曲(MinkLoc3D)集成了用于手工制作描述符(如scancontext)的典型的改进。我们的实验表明,从3D Lidars(USYD校园数据集)和伟大的泛化能力(Kitti DataSet)的单次扫描的结果有所改善。在累积的2D扫描(RobotCar Intensity数据集)上使用强度信息提高了性能,即使球形表示不会产生明显的改进。结果,Minkloc3D-Si适用于从3D延迟的单次扫描,使其适用于自动车辆。
translated by 谷歌翻译
基于图形的大量系统的关键组成部分是能够检测轨迹中的环闭合以减少从探视法累积的漂移。大多数基于激光雷达的方法仅通过仅使用几何信息来实现此目标,而无视场景的语义。在这项工作中,我们介绍了Padloc,这是一种基于激光雷达的环路闭合检测和注册体系结构,其中包括共享的3D卷积特征提取主链,用于环路闭合检测的全局描述符,以及用于点云匹配和注册的新型变压器头。我们提出了多种方法,用于估计基于多样性指数的点匹配置信度。此外,为了提高前向后的一致性,我们建议使用两个共享匹配和注册头,并通过利用估计的相对转换必须相互倒数来交换其源和目标输入。此外,我们以新颖的损失函数的形式利用综合信息在培训期间,将匹配问题折叠为语义标签的分类任务,并作为实例标签的图形连接分配。我们在多个现实世界数据集上对PADLOC进行了广泛的评估,证明它可以实现最新的性能。我们的工作代码可在http://padloc.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
点云注册是许多应用程序(例如本地化,映射,跟踪和重建)的基本任务。成功的注册依赖于提取鲁棒和歧视性的几何特征。现有的基于学习的方法需要高计算能力来同时处理大量原始点。尽管这些方法取得了令人信服的结果,但由于高计算成本,它们很难在现实情况下应用。在本文中,我们介绍了一个框架,该框架使用图形注意网络有效地从经济上提取密集的特征,以进行点云匹配和注册(DFGAT)。 DFGAT的检测器负责在大型原始数据集中找到高度可靠的关键点。 DFGAT的描述符将这些关键点与邻居相结合,以提取不变的密度特征,以准备匹配。图形注意力网络使用了丰富点云之间关系的注意机制。最后,我们将其视为最佳运输问题,并使用Sinkhorn算法找到正匹配和负面匹配。我们对KITTI数据集进行了彻底的测试,并评估了该方法的有效性。结果表明,与其他最先进的方法相比,使用有效紧凑的关键点选择和描述可以实现最佳性能匹配指标,并达到99.88%注册的最高成功率。
translated by 谷歌翻译
对于许多应用程序,例如同时本地化和映射(SLAM),基于点云的大规模识别是一项重要但具有挑战性的任务。以任务为云检索问题,以前的方法取得了令人愉快的成就。但是,如何处理由旋转问题引起的灾难性崩溃仍然不足。在本文中,为了解决这个问题,我们提出了一个基于点云的新型旋转型大型位置识别网络(RPR-NET)。特别是,为了解决问题,我们建议分三个步骤学习旋转不变的功能。首先,我们设计了三种新型的旋转不变特征(RIF),它们是可以保持旋转不变属性的低级特征。其次,使用这些Rifs,我们设计了一个细心的模块来学习旋转不变的内核。第三,我们将这些内核应用于先前的点云功能,以生成新功能,这是众所周知的SO(3)映射过程。通过这样做,可以学习高级场景特定的旋转不变功能。我们将上述过程称为细心的旋转不变卷积(ARICONV)。为了实现位置识别目标,我们构建了RPR-NET,它将Ariconv作为构建密集网络体系结构的基本单元。然后,可以从RPR-NET中充分提取用于基于检索的位置识别的强大全局描述符。普遍数据​​集的实验结果表明,我们的方法可以在解决旋转问题时显着优于现有的最新位置识别模型的可比结果,并显着优于其他旋转不变的基线模型。
translated by 谷歌翻译
特征提取和匹配是许多计算机视觉任务的基本部分,例如2D或3D对象检测,识别和注册。众所周知,2D功能提取和匹配已经取得了巨大的成功。不幸的是,在3D领域,由于描述性和效率低下,目前的方法无法支持3D激光雷达传感器在视觉任务中的广泛应用。为了解决此限制,我们提出了一种新颖的3D特征表示方法:3D激光点云的线性关键点表示,称为link3d。 Link3D的新颖性在于它完全考虑了LiDar Point Cloud的特征(例如稀疏性,场景的复杂性),并用其强大的邻居键盘来表示当前关键点,从而对当前关键点的描述提供了强烈的约束。提出的链接3D已在两个公共数据集(即Kitti,Steven VLP16)上进行了评估,实验结果表明,我们的方法在匹配性能方面的最先进表现都大大优于最先进的方法。更重要的是,Link3D显示出出色的实时性能(基于LIDAR的频率10 Hz)。 Link3D平均仅需32毫秒即可从64射线激光束收集的点云中提取功能,并且仅需大约8毫秒即可匹配两次LIDAR扫描,当时用Intel Core i7 @2.2 GHz处理器执行笔记本。此外,我们的方法可以广泛扩展到各种3D视觉应用。在本文中,我们已将Link3D应用于3D注册,LiDAR ODOMETIRE和放置识别任务,并与最先进的方法相比实现了竞争成果。
translated by 谷歌翻译
位置识别是自动驾驶汽车实现循环结束或全球本地化的重要组成部分。在本文中,我们根据机上激光雷达传感器获得的顺序3D激光扫描解决了位置识别问题。我们提出了一个名为SEQOT的基于变压器的网络,以利用由LIDAR数据生成的顺序范围图像提供的时间和空间信息。它使用多尺度变压器以端到端的方式为每一个LiDAR范围图像生成一个全局描述符。在线操作期间,我们的SEQOT通过在当前查询序列和地图中存储的描述符之间匹配此类描述符来找到相似的位置。我们在不同类型的不同环境中使用不同类型的LIDAR传感器收集的四个数据集评估了我们的方法。实验结果表明,我们的方法优于最新的基于激光痛的位置识别方法,并在不同环境中概括了。此外,我们的方法比传感器的帧速率更快地在线运行。我们的方法的实现以开放源形式发布,网址为:https://github.com/bit-mjy/seqot。
translated by 谷歌翻译
基于激光雷达的本地化方法是用于大规模导航任务的基本模块,例如最后一英里交付和自动驾驶,并且本地化鲁棒性高度依赖于观点和3D功能提取。我们以前的工作提供了一个观点不变的描述符来处理观点差异;但是,全局描述符在无监督聚类中的信号噪声比率低,从而降低了可区分的特征提取能力。我们开发了SphereVlad ++,这是这项工作中一种引起注意的观点不变的位置识别方法。 SphereVlad ++在每个唯一区域的球形视角上投射点云,并通过全局3D几何分布捕获本地特征及其依赖关系之间的上下文连接。作为回报,全局描述符中的群集元素以本地和全球几何形式为条件,并支持SphereVlad的原始视点不变属性。在实验中,我们评估了SphereVlad ++在匹兹堡市的公共Kitti360数据集和自我生成的数据集上的本地化性能。实验结果表明,SphereVlad ++在小甚至完全逆转的视点差异下优于所有相对最新的3D位置识别方法,并显示0.69%和15.81%的成功检索率,比第二好的检索率更好。低计算要求和高时间效率也有助于其用于低成本机器人的应用。
translated by 谷歌翻译
基于激光雷达的位置识别是自动驾驶汽车和机器人应用程序中全球本地化的关键组成部分之一。随着DL方法在从3D激光雷达的学习有用信息方面的成功中,Place识别也从这种方式中受益,这导致了更高的重新定位和循环闭合检测性能,尤其是在具有重大变化条件的环境中。尽管在该领域取得了进展,但从3D激光雷达数据中提取适当有效的描述符,这些数据不变,而不断变化的条件和方向仍然是未解决的挑战。为了解决这个问题,这项工作提出了一个基于3D激光雷达的新型深度学习网络(名为ATTDLNET),该网络使用基于范围的代理表示点云和具有堆叠注意力层的注意力网络,以选择性地专注于远程上下文和Inter Inter - 特征关系。在KITTI数据集中对拟议的网络进行了训练和验证,并提供了消融研究以评估新的注意力网络。结果表明,增加对网络的关注会提高性能,从而导致有效的循环封闭,并优于已建立的基于3D激光雷达的位置识别方法。从消融研究中,结果表明中间编码器层的平均性能最高,而更深的层对方向的变化更为强大。该代码可在https://github.com/cybonic/attdlnet上公开获取
translated by 谷歌翻译
我们描述了一种新的方法,该方法是基于与高级隐式语义特征的低级颜色和几何特征的汇总颜色和几何特征的室内识别。它使用了一个2阶段的深度学习框架,其中第一阶段经过了语义分割的辅助任务的训练,第二阶段的第二阶段使用了第一阶段的层中的特征来生成区分描述符以进行位置识别。辅助任务鼓励这些功能在语义上有意义,因此将RGB点云数据中的几何形状和颜色汇总为具有隐式语义信息。我们使用从扫描仪数据集派生的室内识别数据集进行培训和评估,其中一个包括由100个不同房间生成的3,608点云的测试集。与传统的基于功能的方法和四种最先进的深度学习方法进行比较表明,我们的方法显着优于所有五种方法,例如,取得前3名平均召回率为75%,而41%的平均召回率为41%最接近的竞争对手方法。我们的代码可在以下网址找到:https://github.com/yuhangming/semantic-indoor-place-recognition
translated by 谷歌翻译
循环结束是自动移动系统同时本地化和映射(SLAM)的基本组成部分。在视觉大满贯领域,单词袋(弓)在循环封闭方面取得了巨大的成功。循环搜索的弓特征也可以在随后的6-DOF环校正中使用。但是,对于3D激光雷达的猛击,最新方法可能无法实时识别循环,并且通常无法纠正完整的6-DOF回路姿势。为了解决这一限制,我们呈现了一袋新颖的单词,以实时循环在3D LIDAR大满贯中关闭,称为Bow3D。我们方法的新颖性在于,它不仅有效地识别了重新审视的环路,而且还实时纠正了完整的6型循环姿势。 BOW3D根据3D功能link3D构建单词袋,该链接有效,姿势不变,可用于准确的点对点匹配。我们将我们提出的方法嵌入了3D激光射击系统中,以评估循环闭合性能。我们在公共数据集上测试我们的方法,并将其与其他最先进的算法进行比较。在大多数情况下,BOW3D在F1 MAX和扩展精度分数方面表现出更好的性能,并具有出色的实时性能。值得注意的是,BOW3D平均需要50毫秒才能识别和纠正Kitti 00中的循环(包括4K+ 64射线激光扫描),当在使用Intel Core i7 @2.2 GHz处理器的笔记本上执行时。
translated by 谷歌翻译
在本文中,我们建议超越建立的基于视觉的本地化方法,该方法依赖于查询图像和3D点云之间的视觉描述符匹配。尽管通过视觉描述符匹配关键点使本地化高度准确,但它具有重大的存储需求,提出了隐私问题,并需要长期对描述符进行更新。为了优雅地应对大规模定位的实用挑战,我们提出了Gomatch,这是基于视觉的匹配的替代方法,仅依靠几何信息来匹配图像键点与地图的匹配,这是轴承矢量集。我们的新型轴承矢量表示3D点,可显着缓解基于几何的匹配中的跨模式挑战,这阻止了先前的工作在现实环境中解决本地化。凭借额外的仔细建筑设计,Gomatch在先前的基于几何的匹配工作中改善了(1067m,95.7升)和(1.43m,34.7摄氏度),平均中位数姿势错误,同时需要7个尺寸,同时需要7片。与最佳基于视觉的匹配方法相比,几乎1.5/1.7%的存储容量。这证实了其对现实世界本地化的潜力和可行性,并为不需要存储视觉描述符的城市规模的视觉定位方法打开了未来努力的大门。
translated by 谷歌翻译
由直觉的激励,即在相应的3D点云中定位2D图像的关键步骤正在建立它们之间的2d-3d对应关系,我们提出了第一个基于特征的密度通信框架,以解决图像到点云注册问题,称为Corri2p,由三个模块组成,即特征嵌入,对称重叠区域检测和通过已建立的对应关系构成估计。具体而言,给定一对2D图像和3D点云,我们首先将它们转换为高维特征空间,并将结果特征馈入对称重叠区域检测器,以确定图像和点云相互重叠的区域。然后,我们使用重叠区域的功能在RANSAC内运行EPNP之前以估算相机的姿势,以建立2D-3D对应关系。 Kitti和Nuscenes数据集的实验结果表明,我们的Corri2p优于最先进的图像到点云注册方法。我们将公开提供代码。
translated by 谷歌翻译