基于仿真的推理(SBI)正在迅速将自己确立为一种标准的机器学习技术,用于分析宇宙学调查中的数据。尽管通过学习模型对密度估计的质量持续改进,但这种技术对真实数据的应用完全依赖于远远超出培训分布的神经网络的概括能力,这主要是不受限制的。由于科学家创建的模拟的不完美,以及产生所有可能参数组合的巨大计算费用,因此,宇宙学中的SBI方法很容易受到此类概括性问题的影响。在这里,我们讨论了这两个问题的效果,并展示如何使用贝叶斯神经网络框架进行训练SBI可以减轻偏见,并在培训集外产生更可靠的推理。我们介绍了CosmosWag,这是平均随机重量的首次应用,并将其应用于经过训练的SBI,以推断宇宙微波背景。
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
Simulation-based inference (SBI) solves statistical inverse problems by repeatedly running a stochastic simulator and inferring posterior distributions from model-simulations. To improve simulation efficiency, several inference methods take a sequential approach and iteratively adapt the proposal distributions from which model simulations are generated. However, many of these sequential methods are difficult to use in practice, both because the resulting optimisation problems can be challenging and efficient diagnostic tools are lacking. To overcome these issues, we present Truncated Sequential Neural Posterior Estimation (TSNPE). TSNPE performs sequential inference with truncated proposals, sidestepping the optimisation issues of alternative approaches. In addition, TSNPE allows to efficiently perform coverage tests that can scale to complex models with many parameters. We demonstrate that TSNPE performs on par with previous methods on established benchmark tasks. We then apply TSNPE to two challenging problems from neuroscience and show that TSNPE can successfully obtain the posterior distributions, whereas previous methods fail. Overall, our results demonstrate that TSNPE is an efficient, accurate, and robust inference method that can scale to challenging scientific models.
translated by 谷歌翻译
We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms can produce computationally unfaithful posterior approximations. Our results show that all benchmarked algorithms -- (Sequential) Neural Posterior Estimation, (Sequential) Neural Ratio Estimation, Sequential Neural Likelihood and variants of Approximate Bayesian Computation -- can yield overconfident posterior approximations, which makes them unreliable for scientific use cases and falsificationist inquiry. Failing to address this issue may reduce the range of applicability of simulation-based inference. For this reason, we argue that research efforts should be made towards theoretical and methodological developments of conservative approximate inference algorithms and present research directions towards this objective. In this regard, we show empirical evidence that ensembling posterior surrogates provides more reliable approximations and mitigates the issue.
translated by 谷歌翻译
推断基于实验观察的随机模型的参数是科学方法的核心。特别具有挑战性的设置是当模型强烈不确定时,即当不同的参数集产生相同的观察时。这在许多实际情况下出现,例如在推断无线电源的距离和功率时(是源关闭和弱或远远强,且强大且强大?)或估计电生理实验的放大器增益和底层脑活动。在这项工作中,我们通过利用由辅助观察集共享全局参数传达的附加信息来阐明这种不确定性的新方法。我们的方法基于对贝叶斯分层模型的标准化流程扩展了基于仿真的推断(SBI)的最新进展。我们通过模拟和实际EEG数据将其应用于可用于分析解决方案的激励示例,以便将其验证我们的提案,然后将其从计算神经科学逆变众所周知的非线性模型。
translated by 谷歌翻译
贝叶斯工作流程通常需要引入滋扰参数,但对于核心科学建模,需要访问边缘后部密度。在这项工作中,我们使用掩盖的自回归流量和内核密度估计器封装边缘后部,使我们能够计算边际kullback-leibler脱离器和边缘贝叶斯模型尺寸,此外还可以生成样品和计算边际对数概率。我们将其应用于暗能量调查的局部宇宙学示例和全局21cm信号实验。除了计算边缘贝叶斯统计数据外,这项工作对于在贝叶斯实验设计,复杂的先验建模和似然仿真中进一步应用也很重要。该技术可在PIP可容纳的代码人造黄油中公开获得。
translated by 谷歌翻译
本文提出了最新的方法学进步,以检查一般类贝叶斯分层模型(BHM)的基于模拟的推理(SBI),同时检查模型错误指定。我们的方法基于两个步骤的框架。首先,推断出作为BHM第二层的潜在函数被推断,并用于诊断可能的模型错误指定。其次,通过SBI推断受信任模型的目标参数。第一步中使用的仿真被回收以进行分数压缩,这是第二步所必需的。作为概念的证明,我们将框架应用于基于Lotka-Volterra方程的猎物预言模型,并涉及复杂的观察过程。
translated by 谷歌翻译
We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and calibration in deep learning. Stochastic Weight Averaging (SWA), which computes the first moment of stochastic gradient descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates. Moreover, we demonstrate that SWAG performs well on a wide variety of tasks, including out of sample detection, calibration, and transfer learning, in comparison to many popular alternatives including MC dropout, KFAC Laplace, SGLD, and temperature scaling.
translated by 谷歌翻译
在神经密度估计的进展之后,近年来,已经取得了相当大的进步,该方法是基于模拟的推断(SBI)方法,能够对随机仿真模型进行柔性,黑盒,近似贝叶斯的推断。尽管已经证明神经SBI方法可以提供准确的后近似值,但建立这些结果的仿真研究仅考虑了明确指定的问题 - 即模型和数据生成过程完全重合的地方。但是,在模型错误指定的情况下,这种算法的行为很少受到关注。在这项工作中,我们提供了对神经SBI算法在存在各种模型错误指定的情况下的行为的首次全面研究。我们发现,错误指定会对性能产生深远的影响。探索了一些缓解策略,但是未经测试的方法在所有情况下都可以防止失败。我们得出的结论是,如果要依靠神经SBI算法来得出准确的科学结论,则需要新的方法来解决模型错误指定。
translated by 谷歌翻译
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be highly challenging, since the corresponding likelihood function is often intractable, and model simulation may be computationally burdensome or infeasible. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to base Bayesian inference directly on the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimising a transform of the approximate posterior that minimises a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.
translated by 谷歌翻译
神经密度估计值证明在各种研究领域进行高效的仿真贝叶斯推理方面具有显着强大。特别是,Bayesflow框架使用两步方法来实现在仿真程序隐式地定义似然函数的设置中的摊销参数估计。但是当模拟是现实差的差异时,这种推断是多么忠实?在本文中,我们概念化了基于模拟的推论中出现的模型误操作的类型,并系统地研究了这些误操作下的Bayesflow框架的性能。我们提出了一个增强优化目标,它对潜伏数据空间上的概率结构施加了概率结构,并利用了最大平均差异(MMD)来检测推理期间的可能灾难性的误操作,破坏了所获得的结果的有效性。我们验证了许多人工和现实的误操作的检测标准,从玩具共轭模型到复杂的决策和疾病爆发动态的复杂模型应用于实际数据。此外,我们表明后部推理误差随着真实数据生成分布与潜在摘要空间中的典型模拟集之间的常数而增加。因此,我们展示了MMD的双重实用性作为检测模型误操作的方法和作为验证摊销贝叶斯推理的忠实性的代理。
translated by 谷歌翻译
我们提出了一种隐含的可能性方法,可以通过分散目录数据量化宇宙学信息,并作为图形组装。为此,我们使用模拟暗物质光环目录探索宇宙学的推断。我们采用最大化神经网络(IMNN)的信息来量化Fisher信息提取,这是图表的函数。我们a)在无噪声限制下,模块图结构对基础宇宙学具有高度敏感性,b)表明,通过比较传统统计,网络自动结合质量和聚类信息,c)证明图形神经网络仍然可以提取信息。当目录受到嘈杂的调查削减时,d)说明了如何将非线性IMNN摘要用作贝叶斯隐性可能性推断的渐近最佳压缩统计。我们在两点相关功能上,我们将$ \ omega_m,\ sigma_8 $参数约束降低了42倍,并证明网络自动组合质量和聚类信息,将关节$ \ omega_m,\ sigma_8 $参数约束减少42倍。 。这项工作利用了JAX中的图形数据的新IMNN实现,该实现可以利用数值或自动差异性。我们还显示,IMNNS成功地压缩了远离拟合网络的基准模型的模拟,这表明基于目录的分析中$ n $ point统计的有希望的替代方法。
translated by 谷歌翻译
基于模拟的推理的现代方法依赖于深度学习代理来实现与计算机模拟器的近似推断。在实践中,估计的后代的计算忠诚度很少得到保证。例如,Hermans等。 (2021)表明,当前基于仿真的推理算法可以产生过度自信的后代,因此可能会出现虚假推断。在这项工作中,我们引入了平衡的神经比估计(BNRE),该算法的变体旨在产生后近似值,往往更保守,从而提高了其可靠性,同时共享同样的贝叶斯最佳解决方案。我们通过执行平衡条件来实现这一目标,从而增加了小型模拟预算制度中的量化不确定性,同时仍会随着预算的增加而融合到确切的后部。我们提供的理论论点表明,BNRE倾向于产生比NRE更保守的后替代物。我们对BNRE进行了多种任务的评估,并表明它在所有测试的基准和仿真预算上产生了保守的后验代替代物。最后,我们强调BNRE可以直接实施NRE,并且不引入任何计算开销。
translated by 谷歌翻译
有条件神经密度估计器的仿真推断是解决科学逆问题的强大方法。然而,这些方法通常将底层向前模型视为一个黑匣子,没有办法利用等物学,例如协调。协调在科学模型中是常见的,然而将它们直接集成到表达推导网络中(例如标准化流动)并不简单。我们在这里描述了在参数和数据的联合转换下掺入协调的替代方法。我们的方法 - 称为组等级神经后后估计(GNPE) - 基于自始终标准化数据的“姿势”,同时估计在参数上后部。它是独立的架构,并适用于精确和近似的协调。作为现实世界的应用,我们使用GNPE从引力波观测到Astrophysical Block Block Systems的摊销推理。我们表明GNPE实现了最先进的准确性,同时减少了三个数量级的推理时间。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
了解晕星连接是基本的,以提高我们对暗物质的性质和性质的知识。在这项工作中,我们构建一个模型,鉴于IT主机的星系的位置,速度,恒星群体和半径的位置。为了捕获来自星系属性的相关性及其相位空间的相关信息,我们使用图形神经网络(GNN),该网络设计用于使用不规则和稀疏数据。我们从宇宙学和天体物理学中培训了我们在Galaxies上的模型,从宇宙学和天体物理学与机器学习模拟(骆驼)项目。我们的模型,占宇宙学和天体物理的不确定性,能够用$ \ SIM 0.2欧元的准确度来限制晕群。此外,在一套模拟上培训的GNN能够在用利用不同的代码的模拟上进行测试时保留其精度的一部分精度。 GNN的Pytorch几何实现在HTTPS://github.com/pablovd/halographnet上公开可用于github上
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
我们为宇宙结构形成构建了一个场级模拟器,该模拟器在非线性方案中是准确的。我们的仿真器由两个卷积神经网络组成,这些神经网络训练有素,可根据其线性输入输出N体模拟粒子的非线性位移和速度。宇宙学的依赖性是在神经网络的每一层上以样式参数的形式编码的,从而使模拟器能够有效地插入了在广泛的背景问题范围内,不同扁平$ \ lambda $ cdm宇宙之间的结构形成结果。神经网络体系结构使模型可通过构造来区分,从而为快速场水平推断提供了强大的工具。我们通过考虑几个摘要统计数据,包括具有和不带红移空间扭曲的密度谱,位移功率谱,动量功率谱,密度双光谱,光晕丰度以及带有红移空间的光晕概况,并没有红移空间,我们可以测试方法的准确性。扭曲。我们将模拟器中的这些统计数据与完整的N体结果,可乐方法和没有宇宙学依赖性的基准神经网络进行了比较。我们发现我们的仿真器将准确的结果降至$ k \ sim 1 \ \ mathrm {mpc}^{ - 1} \,h $,代表对COLA和基金神经网络的可观改进。我们还证明,我们的模拟器很好地概括到包含原始非高斯性的初始条件,而无需任何其他样式参数或再培训。
translated by 谷歌翻译