基于模拟的推理的现代方法依赖于深度学习代理来实现与计算机模拟器的近似推断。在实践中,估计的后代的计算忠诚度很少得到保证。例如,Hermans等。 (2021)表明,当前基于仿真的推理算法可以产生过度自信的后代,因此可能会出现虚假推断。在这项工作中,我们引入了平衡的神经比估计(BNRE),该算法的变体旨在产生后近似值,往往更保守,从而提高了其可靠性,同时共享同样的贝叶斯最佳解决方案。我们通过执行平衡条件来实现这一目标,从而增加了小型模拟预算制度中的量化不确定性,同时仍会随着预算的增加而融合到确切的后部。我们提供的理论论点表明,BNRE倾向于产生比NRE更保守的后替代物。我们对BNRE进行了多种任务的评估,并表明它在所有测试的基准和仿真预算上产生了保守的后验代替代物。最后,我们强调BNRE可以直接实施NRE,并且不引入任何计算开销。
translated by 谷歌翻译
We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms can produce computationally unfaithful posterior approximations. Our results show that all benchmarked algorithms -- (Sequential) Neural Posterior Estimation, (Sequential) Neural Ratio Estimation, Sequential Neural Likelihood and variants of Approximate Bayesian Computation -- can yield overconfident posterior approximations, which makes them unreliable for scientific use cases and falsificationist inquiry. Failing to address this issue may reduce the range of applicability of simulation-based inference. For this reason, we argue that research efforts should be made towards theoretical and methodological developments of conservative approximate inference algorithms and present research directions towards this objective. In this regard, we show empirical evidence that ensembling posterior surrogates provides more reliable approximations and mitigates the issue.
translated by 谷歌翻译
在神经密度估计的进展之后,近年来,已经取得了相当大的进步,该方法是基于模拟的推断(SBI)方法,能够对随机仿真模型进行柔性,黑盒,近似贝叶斯的推断。尽管已经证明神经SBI方法可以提供准确的后近似值,但建立这些结果的仿真研究仅考虑了明确指定的问题 - 即模型和数据生成过程完全重合的地方。但是,在模型错误指定的情况下,这种算法的行为很少受到关注。在这项工作中,我们提供了对神经SBI算法在存在各种模型错误指定的情况下的行为的首次全面研究。我们发现,错误指定会对性能产生深远的影响。探索了一些缓解策略,但是未经测试的方法在所有情况下都可以防止失败。我们得出的结论是,如果要依靠神经SBI算法来得出准确的科学结论,则需要新的方法来解决模型错误指定。
translated by 谷歌翻译
基于采样的推理技术是现代宇宙学数据分析的核心;然而,这些方法与维度不良,通常需要近似或顽固的可能性。在本文中,我们描述了截短的边际神经比率估计(TMNRE)(即所谓的基于模拟的推断的新方法)自然避免了这些问题,提高了$(i)$效率,$(ii)$可扩展性和$ (iii)推断后的后续后续的可信度。使用宇宙微波背景(CMB)的测量,我们表明TMNRE可以使用比传统马尔可夫链蒙特卡罗(MCMC)方法更少模拟器呼叫的数量级来实现融合的后海后。值得注意的是,所需数量的样本有效地独立于滋扰参数的数量。此外,称为\ MEMPH {本地摊销}的属性允许对基于采样的方法无法访问的严格统计一致性检查的性能。 TMNRE承诺成为宇宙学数据分析的强大工具,特别是在扩展宇宙学的背景下,其中传统的基于采样的推理方法所需的时间级数融合可以大大超过$ \ Lambda $ CDM等简单宇宙学模型的时间。为了执行这些计算,我们使用开源代码\ texttt {swyft}来使用TMNRE的实现。
translated by 谷歌翻译
Simulation-based inference (SBI) solves statistical inverse problems by repeatedly running a stochastic simulator and inferring posterior distributions from model-simulations. To improve simulation efficiency, several inference methods take a sequential approach and iteratively adapt the proposal distributions from which model simulations are generated. However, many of these sequential methods are difficult to use in practice, both because the resulting optimisation problems can be challenging and efficient diagnostic tools are lacking. To overcome these issues, we present Truncated Sequential Neural Posterior Estimation (TSNPE). TSNPE performs sequential inference with truncated proposals, sidestepping the optimisation issues of alternative approaches. In addition, TSNPE allows to efficiently perform coverage tests that can scale to complex models with many parameters. We demonstrate that TSNPE performs on par with previous methods on established benchmark tasks. We then apply TSNPE to two challenging problems from neuroscience and show that TSNPE can successfully obtain the posterior distributions, whereas previous methods fail. Overall, our results demonstrate that TSNPE is an efficient, accurate, and robust inference method that can scale to challenging scientific models.
translated by 谷歌翻译
重要的加权是调整蒙特卡洛集成以说明错误分布中抽取的一种一般方法,但是当重要性比的右尾巴较重时,最终的估计值可能是高度可变的。当目标分布的某些方面无法通过近似分布捕获,在这种情况下,可以通过修改极端重要性比率来获得更稳定的估计。我们提出了一种新的方法,该方法使用拟合模拟重要性比率的上尾的广义帕累托分布来稳定重要性权重。该方法在经验上的性能要比现有方法稳定重要性采样估计值更好,包括稳定的有效样本量估计,蒙特卡洛误差估计和收敛诊断。提出的帕累托$ \ hat {k} $有限样本收敛率诊断对任何蒙特卡洛估计器都有用。
translated by 谷歌翻译
Scientists continue to develop increasingly complex mechanistic models to reflect their knowledge more realistically. Statistical inference using these models can be highly challenging, since the corresponding likelihood function is often intractable, and model simulation may be computationally burdensome or infeasible. Fortunately, in many of these situations, it is possible to adopt a surrogate model or approximate likelihood function. It may be convenient to base Bayesian inference directly on the surrogate, but this can result in bias and poor uncertainty quantification. In this paper we propose a new method for adjusting approximate posterior samples to reduce bias and produce more accurate uncertainty quantification. We do this by optimising a transform of the approximate posterior that minimises a scoring rule. Our approach requires only a (fixed) small number of complex model simulations and is numerically stable. We demonstrate good performance of the new method on several examples of increasing complexity.
translated by 谷歌翻译
我们考虑了使用显微镜或X射线散射技术产生的图像数据自组装的模型的贝叶斯校准。为了说明BCP平衡结构中的随机远程疾病,我们引入了辅助变量以表示这种不确定性。然而,这些变量导致了高维图像数据的综合可能性,通常可以评估。我们使用基于测量运输的可能性方法以及图像数据的摘要统计数据来解决这一具有挑战性的贝叶斯推理问题。我们还表明,可以计算出有关模型参数的数据中的预期信息收益(EIG),而无需额外的成本。最后,我们介绍了基于二嵌段共聚物薄膜自组装和自上而下显微镜表征的ohta-kawasaki模型的数值案例研究。为了进行校准,我们介绍了一些基于域的能量和傅立叶的摘要统计数据,并使用EIG量化了它们的信息性。我们证明了拟议方法研究数据损坏和实验设计对校准结果的影响的力量。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译
近似贝叶斯计算(ABC)使复杂模型中的统计推断能够计算,其可能性难以计算,但易于模拟。 ABC通过接受/拒绝机制构建到后部分布的内核类型近似,该机制比较真实和模拟数据的摘要统计信息。为了避免对汇总统计数据的需求,我们直接将经验分布与通过分类获得的Kullback-Leibler(KL)发散估计值进行比较。特别是,我们将灵活的机器学习分类器混合在ABC中以自动化虚假/真实数据比较。我们考虑传统的接受/拒绝内核以及不需要ABC接受阈值的指数加权方案。我们的理论结果表明,我们的ABC后部分布集中在真实参数周围的速率取决于分类器的估计误差。我们得出了限制后形状的结果,并找到了一个正确缩放的指数内核,渐近常态持有。我们展示了我们对模拟示例以及在股票波动率估计的背景下的真实数据的有用性。
translated by 谷歌翻译
离散状态空间代表了对统计推断的主要计算挑战,因为归一化常数的计算需要在大型或可能的无限集中进行求和,这可能是不切实际的。本文通过开发适合离散可怜的可能性的新型贝叶斯推理程序来解决这一计算挑战。受到连续数据的最新方法学进步的启发,主要思想是使用离散的Fisher Divergence更新有关模型参数的信念,以代替有问题的棘手的可能性。结果是可以使用标准计算工具(例如Markov Chain Monte Carlo)进行采样的广义后部,从而规避了棘手的归一化常数。分析了广义后验的统计特性,并具有足够的后验一致性和渐近正态性的条件。此外,提出了一种新颖的通用后代校准方法。应用程序在离散空间数据的晶格模型和计数数据的多元模型上介绍,在每种情况下,方法论都以低计算成本促进通用的贝叶斯推断。
translated by 谷歌翻译
无似然方法是对可以模拟的隐式模型执行推断的必不可少的工具,但相应的可能性是棘手的。但是,常见的无可能方法不能很好地扩展到大量模型参数。一种有前途的无可能推理的有前途的方法涉及通过仅根据据信为低维成分提供信息的摘要统计数据来估计低维边缘后期,然后在某种程度上结合了低维近似值。在本文中,我们证明,对于看似直观的汇总统计选择,这种低维近似值在实践中可能是差的。我们描述了一个理想化的低维汇总统计量,原则上适用于边际估计。但是,在实践中很难直接近似理想的选择。因此,我们提出了一种替代的边际估计方法,该方法更容易实施和自动化。考虑到初始选择的低维摘要统计量可能仅对边缘后验位置有用,新方法通过使用所有摘要统计数据来确保全局可识别性来提高性能,从而提高性能使用低维摘要统计量进行精确的低维近似。我们表明,该方法的后部可以分别基于低维和完整的摘要统计数据将其表示为后验分布的对数库。在几个示例中说明了我们方法的良好性能。
translated by 谷歌翻译
We present the GPry algorithm for fast Bayesian inference of general (non-Gaussian) posteriors with a moderate number of parameters. GPry does not need any pre-training, special hardware such as GPUs, and is intended as a drop-in replacement for traditional Monte Carlo methods for Bayesian inference. Our algorithm is based on generating a Gaussian Process surrogate model of the log-posterior, aided by a Support Vector Machine classifier that excludes extreme or non-finite values. An active learning scheme allows us to reduce the number of required posterior evaluations by two orders of magnitude compared to traditional Monte Carlo inference. Our algorithm allows for parallel evaluations of the posterior at optimal locations, further reducing wall-clock times. We significantly improve performance using properties of the posterior in our active learning scheme and for the definition of the GP prior. In particular we account for the expected dynamical range of the posterior in different dimensionalities. We test our model against a number of synthetic and cosmological examples. GPry outperforms traditional Monte Carlo methods when the evaluation time of the likelihood (or the calculation of theoretical observables) is of the order of seconds; for evaluation times of over a minute it can perform inference in days that would take months using traditional methods. GPry is distributed as an open source Python package (pip install gpry) and can also be found at https://github.com/jonaselgammal/GPry.
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
translated by 谷歌翻译
广义贝叶斯推理使用损失函数而不是可能性的先前信仰更新,因此可以用于赋予鲁棒性,以防止可能的错误规范的可能性。在这里,我们认为广泛化的贝叶斯推论斯坦坦差异作为损失函数的损失,由应用程序的可能性含有难治性归一化常数。在这种情况下,斯坦因差异来避免归一化恒定的评估,并产生封闭形式或使用标准马尔可夫链蒙特卡罗的通用后出版物。在理论层面上,我们显示了一致性,渐近的正常性和偏见 - 稳健性,突出了这些物业如何受到斯坦因差异的选择。然后,我们提供关于一系列棘手分布的数值实验,包括基于内核的指数家庭模型和非高斯图形模型的应用。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
在没有明确或易于处理的可能性的情况下,贝叶斯人经常诉诸于贝叶斯计算(ABC)进行推理。我们的工作基于生成的对抗网络(GAN)和对抗性变分贝叶斯(GAN),为ABC桥接了ABC。 ABC和GAN都比较了观察到的数据和假数据的各个方面,分别从后代和似然模拟。我们开发了一个贝叶斯gan(B-GAN)采样器,该采样器通过解决对抗性优化问题直接靶向后部。 B-GAN是由有条件gan在ABC参考上学习的确定性映射驱动的。一旦训练了映射,就可以通过以可忽略的额外费用过滤噪声来获得IID后样品。我们建议使用(1)数据驱动的提案和(2)变化贝叶斯提出两项后处理的本地改进。我们通过常见的bayesian结果支持我们的发现,表明对于某些神经网络发生器和歧视器,真实和近似后骨之间的典型总变化距离收敛到零。我们对模拟数据的发现相对于一些最新的无可能后验模拟器显示出竞争激烈的性能。
translated by 谷歌翻译
我们研究了机器学习(ML)分类技术的误差概率收敛到零的速率的性能。利用大偏差理论,我们为ML分类器提供了数学条件,以表现出误差概率,这些误差概率呈指数级消失,例如$ \ sim \ exp \ left(-n \,i + o(i + o(n)\ right)$,其中$ n $是可用于测试的信息的数量(或其他相关参数,例如图像中目标的大小),而$ i $是错误率。这样的条件取决于数据驱动的决策功能的累积生成功能的Fenchel-Legendre变换(D3F,即,在做出最终二进制决策之前的阈值)在训练阶段中学到的。因此,D3F以及相关的错误率$ $ $取决于给定的训练集,该集合假定有限。有趣的是,可以根据基础统计模型的可用信息生成的可用数据集或合成数据集对这些条件进行验证和测试。换句话说,分类误差概率收敛到零,其速率可以在可用于培训的数据集的一部分上计算。与大偏差理论一致,我们还可以以足够大的$ n $为高斯分布的归一化D3F统计量来确定收敛性。利用此属性设置所需的渐近错误警报概率,从经验上来说,即使对于$ n $的非常现实的值,该属性也是准确的。此外,提供了近似错误概率曲线$ \ sim \ sim \ sim \ sim \ exp \ left(-n \,i \ right)$,这要归功于精制的渐近导数(通常称为精确的渐近学),其中$ \ zeta_n $代表$ \ zeta_n $误差概率的大多数代表性亚指数项。
translated by 谷歌翻译
我们提出了一种非常重要的抽样方法,该方法适用于估计高维问题中的罕见事件概率。我们将一般重要性抽样问题中的最佳重要性分布近似为在订单保留转换组成下的参考分布的推动力,在这种转换的组成下,每种转换都是由平方的张量训练 - 培训分解形成的。平方张量训练的分解提供了可扩展的ANSATZ,用于通过密度近似值来构建具有订单的高维转换。沿着一系列桥接密度移动的地图组成的使用减轻了直接近似浓缩密度函数的难度。为了计算对非规范概率分布的期望,我们设计了一个比率估计器,该比率估计器使用单独的重要性分布估算归一化常数,这再次通过张量训练格式的转换组成构建。与自称的重要性抽样相比,这提供了更好的理论差异,因此为贝叶斯推理问题中罕见事件概率的有效计算打开了大门。关于受微分方程约束的问题的数值实验显示,计算复杂性几乎没有增加,事件概率将零,并允许对迄今为止对复杂,高维后密度的罕见事件概率的迄今无法获得的估计。
translated by 谷歌翻译