在给定地图中的强大定位是大多数自主机器人的关键组成部分。在本文中,我们解决了在室内环境中定位的问题,该问题在室内环境中发生了变化,而突出结构在不同时间点构建的地图中没有对应关系的问题。为了克服地图与由于这种变化引起的观察到的环境之间的差异,我们利用了人类可读的本地化提示来协助定位。这些提示很容易在大多数设施中获得,并且可以通过使用文本斑点来使用RGB摄像机图像来检测。我们使用在2D激光扫描和相机数据上运行的粒子过滤器将这些线索集成到蒙特卡洛本地化框架中。这样,我们为人类行走具有结构性变化和动态的环境提供了强大的本地化解决方案。我们在办公室环境中评估了有关多个挑战室内场景的本地化框架。实验表明,我们的方法对结构变化具有鲁棒性,并且可以在板载计算机上运行。我们(按照纸质接受)发布了方法的开源实现,该实现使用了现成的文本斑点,并用ROS包装器编写了C ++。
translated by 谷歌翻译
强大而准确的本地化是移动自主系统的基本要求。类似杆状的物体,例如交通标志,杆子和灯,由于其局部独特性和长期稳定性,经常使用地标在城市环境中定位。在本文中,我们基于在线运行并且几乎没有计算需求的几何特征,提出了一种新颖,准确,快速的杆提取方法。我们的方法直接对3D LIDAR扫描生成的范围图像执行所有计算,该图像避免了显式处理3D点云,并为每次扫描启用快速的极点提取。我们进一步使用提取的杆子作为伪标签来训练深层神经网络,以基于图像的极点分割。我们测试了我们的几何和基于学习的极点提取方法,用于在不同的扫描仪,路线和季节性变化的不同数据集上定位。实验结果表明,我们的方法表现优于其他最先进的方法。此外,通过从多个数据集提取的伪极标签增强,我们基于学习的方法可以跨不同的数据集运行,并且与基于几何的方法相比,可以实现更好的本地化结果。我们向公众发布了杆数据集,以评估杆的性能以及我们的方法的实施。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
Reliability is a key factor for realizing safety guarantee of full autonomous robot systems. In this paper, we focus on reliability in mobile robot localization. Monte Carlo localization (MCL) is widely used for mobile robot localization. However, it is still difficult to guarantee its safety because there are no methods determining reliability for MCL estimate. This paper presents a novel localization framework that enables robust localization, reliability estimation, and quick re-localization, simultaneously. The presented method can be implemented using similar estimation manner to that of MCL. The method can increase localization robustness to environment changes by estimating known and unknown obstacles while performing localization; however, localization failure of course occurs by unanticipated errors. The method also includes a reliability estimation function that enables us to know whether localization has failed. Additionally, the method can seamlessly integrate a global localization method via importance sampling. Consequently, quick re-localization from failures can be realized while mitigating noisy influence of global localization. Through three types of experiments, we show that reliable MCL that performs robust localization, self-failure detection, and quick failure recovery can be realized.
translated by 谷歌翻译
Lidar-based SLAM systems perform well in a wide range of circumstances by relying on the geometry of the environment. However, even mature and reliable approaches struggle when the environment contains structureless areas such as long hallways. To allow the use of lidar-based SLAM in such environments, we propose to add reflector markers in specific locations that would otherwise be difficult. We present an algorithm to reliably detect these markers and two approaches to fuse the detected markers with geometry-based scan matching. The performance of the proposed methods is demonstrated on real-world datasets from several industrial environments.
translated by 谷歌翻译
准确的本地化是大多数机器人任务的关键要求。现有工作的主体集中在被动定位上,其中假定了机器人的动作,从而从对抽样信息性观察的影响中抽象出来。尽管最近的工作表明学习动作的好处是消除机器人的姿势,但这些方法仅限于颗粒状的离散动作,直接取决于全球地图的大小。我们提出了主动粒子滤网网络(APFN),这种方法仅依赖于本地信息来进行可能的评估以及决策。为此,我们将可区分的粒子过滤器与加固学习剂进行了介绍,该材料会参与地图中最相关的部分。最终的方法继承了粒子过滤器的计算益处,并且可以直接在连续的动作空间中起作用,同时保持完全可区分,从而端到端优化以及对输入模式的不可知。我们通过在现实世界3D扫描公寓建造的影像现实主义室内环境中进行广泛的实验来证明我们的方法的好处。视频和代码可在http://apfn.cs.uni-freiburg.de上找到。
translated by 谷歌翻译
自我定位是一种基本功能,移动机器人导航系统集成到使用地图从一个点转移到另一点。因此,任何提高本地化精度的增强对于执行精致的灵活性任务至关重要。本文描述了一个新的位置,该位置使用Monte Carlo定位(MCL)算法维护几个颗粒人群,始终选择最佳的粒子作为系统的输出。作为新颖性,我们的工作包括一种多尺度匹配匹配算法,以创建新的MCL群体和一个确定最可靠的指标。它还贡献了最新的实现,从错误的估计或未知的初始位置增加了恢复时间。在与NAV2完全集成的模块中评估了所提出的方法,并与当前的最新自适应ACML溶液进行了比较,从而获得了良好的精度和恢复时间。
translated by 谷歌翻译
在这项研究中,我们提出了一种新型的视觉定位方法,以根据RGB摄像机的可视数据准确估计机器人在3D激光镜头内的六个自由度(6-DOF)姿势。使用基于先进的激光雷达的同时定位和映射(SLAM)算法,可获得3D地图,能够收集精确的稀疏图。将从相机图像中提取的功能与3D地图的点进行了比较,然后解决了几何优化问题,以实现精确的视觉定位。我们的方法允许使用配备昂贵激光雷达的侦察兵机器人一次 - 用于映射环境,并且仅使用RGB摄像头的多个操作机器人 - 执行任务任务,其本地化精度高于常见的基于相机的解决方案。该方法在Skolkovo科学技术研究所(Skoltech)收集的自定义数据集上进行了测试。在评估本地化准确性的过程中,我们设法达到了厘米级的准确性;中间翻译误差高达1.3厘米。仅使用相机实现的确切定位使使用自动移动机器人可以解决需要高度本地化精度的最复杂的任务。
translated by 谷歌翻译
Conventional sensor-based localization relies on high-precision maps, which are generally built using specialized mapping techniques involving high labor and computational costs. In the architectural, engineering and construction industry, Building Information Models (BIM) are available and can provide informative descriptions of environments. This paper explores an effective way to localize a mobile 3D LiDAR sensor on BIM-generated maps considering both geometric and semantic properties. First, original BIM elements are converted to semantically augmented point cloud maps using categories and locations. After that, a coarse-to-fine semantic localization is performed to align laser points to the map based on iterative closest point registration. The experimental results show that the semantic localization can track the pose successfully with only one LiDAR sensor, thus demonstrating the feasibility of the proposed mapping-free localization framework. The results also show that using semantic information can help reduce localization errors on BIM-generated maps.
translated by 谷歌翻译
Mohamed Bin Zayed国际机器人挑战(MBZIRC)2020为无人机(无人机)构成了不同的挑战。我们提供了四个量身定制的无人机,专门为MBZIRC的单独空中机器人任务开发,包括自定义硬件和软件组件。在挑战1中,使用高效率,车载对象检测管道进行目标UAV,以捕获来自目标UAV的球。第二个UAV使用类似的检测方法来查找和流行散落在整个竞技场的气球。对于挑战2,我们展示了一种能够自主空中操作的更大的无人机:从相机图像找到并跟踪砖。随后,将它们接近,挑选,运输并放在墙上。最后,在挑战3中,我们的UAV自动发现使用LIDAR和热敏摄像机的火灾。它用船上灭火器熄灭火灾。虽然每个机器人都具有任务特定的子系统,但所有无人机都依赖于为该特定和未来竞争开发的标准软件堆栈。我们介绍了我们最开源的软件解决方案,包括系统配置,监控,强大无线通信,高级控制和敏捷轨迹生成的工具。为了解决MBZirc 2020任务,我们在多个研究领域提出了机器视觉和轨迹生成的多个研究领域。我们介绍了我们的科学贡献,这些贡献构成了我们的算法和系统的基础,并分析了在阿布扎比的MBZIRC竞赛2020年的结果,我们的系统在大挑战中达到了第二名。此外,我们讨论了我们参与这种复杂的机器人挑战的经验教训。
translated by 谷歌翻译
完全自主移动机器人的现实部署取决于能够处理动态环境的强大的大满贯(同时本地化和映射)系统,其中对象在机器人的前面移动以及不断变化的环境,在此之后移动或更换对象。机器人已经绘制了现场。本文介绍了更换式SLAM,这是一种在动态和不断变化的环境中强大的视觉猛烈抨击的方法。这是通过使用与长期数据关联算法结合的贝叶斯过滤器来实现的。此外,它采用了一种有效的算法,用于基于对象检测的动态关键点过滤,该对象检测正确识别了不动态的边界框中的特征,从而阻止了可能导致轨道丢失的功能的耗竭。此外,开发了一个新的数据集,其中包含RGB-D数据,专门针对评估对象级别的变化环境,称为PUC-USP数据集。使用移动机器人,RGB-D摄像头和运动捕获系统创建了六个序列。这些序列旨在捕获可能导致跟踪故障或地图损坏的不同情况。据我们所知,更换 - 峰是第一个对动态和不断变化的环境既有坚固耐用的视觉大满贯系统,又不假设给定的相机姿势或已知地图,也能够实时运行。使用基准数据集对所提出的方法进行了评估,并将其与其他最先进的方法进行了比较,证明是高度准确的。
translated by 谷歌翻译
本文提出了同时定位和地图辅助环境识别方法(SLAMER)方法。移动机器人通常具有环境图,并且可以将环境信息分配给地图。如果本地化成功,则可以预测移动机器人的重要信息,例如,由于可以知道它们的相对姿势。但是,当本地化不起作用时,该预测失败了。必须考虑使用地图信息的姿势估计的不确定性来鲁棒。此外,机器人具有外部传感器,可以使用传感器识别环境信息。这种在线认可当然包含不确定性。但是,它必须与MAP信息融合以进行强大的环境识别,因为随着时间的流逝,该地图还包含不确定性。 Slamer可以同时应对这些不确定性,并实现准确的本地化和环境识别。在本文中,我们在两种情况下演示了基于激光雷达的Slamer的实施。在第一种情况下,我们使用Semantickitti数据集,并表明Slamer比传统方法更能实现准确的估计。在第二种情况下,我们使用室内移动机器人,并表明无法衡量的环境对象(例如打开门和任何入口行都无法识别)。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
本文介绍了Cerberus机器人系统系统,该系统赢得了DARPA Subterranean挑战最终活动。出席机器人自主权。由于其几何复杂性,降解的感知条件以及缺乏GPS支持,严峻的导航条件和拒绝通信,地下设置使自动操作变得特别要求。为了应对这一挑战,我们开发了Cerberus系统,该系统利用了腿部和飞行机器人的协同作用,再加上可靠的控制,尤其是为了克服危险的地形,多模式和多机器人感知,以在传感器退化,以及在传感器退化的条件下进行映射以及映射通过统一的探索路径计划和本地运动计划,反映机器人特定限制的弹性自主权。 Cerberus基于其探索各种地下环境及其高级指挥和控制的能力,表现出有效的探索,对感兴趣的对象的可靠检测以及准确的映射。在本文中,我们报告了DARPA地下挑战赛的初步奔跑和最终奖项的结果,并讨论了为社区带来利益的教训所面临的亮点和挑战。
translated by 谷歌翻译
了解场景是自主导航车辆的关键,以及在线将周围环境分段为移动和非移动物体的能力是这项任务的中央成分。通常,基于深度学习的方法用于执行移动对象分段(MOS)。然而,这些网络的性能强烈取决于标记培训数据的多样性和数量,可以获得昂贵的信息。在本文中,我们提出了一种自动数据标记管道,用于3D LIDAR数据,以节省广泛的手动标记工作,并通过自动生成标记的训练数据来提高现有的基于学习的MOS系统的性能。我们所提出的方法通过批量处理数据来实现数据。首先利用基于占用的动态对象拆除以粗略地检测可能的动态物体。其次,它提取了提案中的段,并使用卡尔曼滤波器跟踪它们。基于跟踪的轨迹,它标记了实际移动的物体,如驾驶汽车和行人。相反,非移动物体,例如,停放的汽车,灯,道路或建筑物被标记为静态。我们表明,这种方法允许我们高效地标记LIDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。我们还使用自动生成的标签培训深度神经网络,并与在同一数据上的手动标签上接受过的手动标签的培训相比,实现了类似的性能,以及使用我们方法生成的标签的其他数据集时更好的性能。此外,我们使用不同的传感器评估我们在多个数据集上的方法,我们的实验表明我们的方法可以在各种环境中生成标签。
translated by 谷歌翻译
本文主要研究范围传感机器人在置信度富的地图(CRM)中的定位和映射,这是一种持续信仰的密集环境表示,然后扩展到信息理论探索以减少姿势不确定性。大多数关于主动同时定位和映射(SLAM)和探索的作品始终假设已知的机器人姿势或利用不准确的信息指标来近似姿势不确定性,从而导致不知名的环境中的勘探性能和效率不平衡。这激发了我们以可测量的姿势不确定性扩展富含信心的互信息(CRMI)。具体而言,我们为CRMS提出了一种基于Rao-Blackwellized粒子过滤器的定位和映射方案(RBPF-CLAM),然后我们开发了一种新的封闭形式的加权方法来提高本地化精度而不扫描匹配。我们通过更准确的近似值进一步计算了使用加权颗粒的不确定的CRMI(UCRMI)。仿真和实验评估显示了在非结构化和密闭场景中提出的方法的定位准确性和探索性能。
translated by 谷歌翻译
本文介绍了使用腿收割机进行精密收集任务的集成系统。我们的收割机在狭窄的GPS拒绝了森林环境中的自主导航和树抓取了一项挑战性的任务。提出了映射,本地化,规划和控制的策略,并集成到完全自主系统中。任务从使用定制的传感器模块开始使用人员映射感兴趣区域。随后,人类专家选择树木进行收获。然后将传感器模块安装在机器上并用于给定地图内的本地化。规划算法在单路径规划问题中搜索一个方法姿势和路径。我们设计了一个路径,后面的控制器利用腿的收割机的谈判粗糙地形的能力。在达接近姿势时,机器用通用夹具抓住一棵树。此过程重复操作员选择的所有树。我们的系统已经在与树干和自然森林中的测试领域进行了测试。据我们所知,这是第一次在现实环境中运行的全尺寸液压机上显示了这一自主权。
translated by 谷歌翻译
感知,规划,估算和控制的当代方法允许机器人在不确定,非结构化环境中的远程代理中稳健运行。此进度现在创造了机器人不仅在隔离,而且在我们的复杂环境中运行的机器人。意识到这个机会需要一种高效且灵活的媒介,人类可以与协作机器人沟通。自然语言提供了一种这样的媒体,通过对自然语言理解的统计方法的重大进展,现在能够解释各种自由形式命令。然而,大多数当代方法需要机器人环境的详细,现有的空间语义地图,这些环境模拟了话语可能引用的可能引用的空间。因此,当机器人部署在新的,先前未知或部分观察到的环境中时,这些方法发生故障,特别是当环境的心理模型在人类运营商和机器人之间不同时。本文提供了一种新的学习框架的全面描述,允许现场和服务机器人解释并正确执行先验未知,非结构化环境中的自然语言指令。对于我们的方法而不是我们的语言作为“传感器” - 在话语中隐含的“传感器” - 推断的空间,拓扑和语义信息,然后利用这些信息来学习在潜在环境模型上的分布。我们将此分布纳入概率,语言接地模型中,并在机器人的动作空间的象征性表示中推断出分布。我们使用模仿学习来确定对环境和行为分布的原因的信仰空间政策。我们通过各种导航和移动操纵实验评估我们的框架。
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
由于范围和几何形状的直接集成,基于激光雷达的本地化和映射是许多现代机器人系统中的核心组件之一,可以实时进行精确的运动估算和​​高质量的高质量图。然而,由于场景中存在不足的环境约束,这种对几何形状的依赖可能导致定位失败,发生在隧道等自对称环境中。这项工作通过提出一种基于神经网络的估计方法来检测机器人操作过程中的(非)本地化性,从而解决了此问题。特别注意扫描到扫描登记的可靠性,因为它是许多激光射击估计管道中的关键组成部分。与以前的主要检测方法相反,该方法通过估算原始传感器测量的可定位性而无需评估基本的注册优化,可以尽早检测失败。此外,由于需要启发式的脱落检测阈值,因此以前的方法在跨环境和传感器类型的概括能力上仍然有限。提出的方法通过从不同环境的集合中学习,从而避免了这个问题,从而使网络在各种情况下运行。此外,该网络专门针对模拟数据进行培训,避免了艰苦的数据收集,以挑战性和退化(通常难以访问)环境。在跨越具有挑战性的环境和两种不同的传感器类型上进行的现场实验中,对所提出的方法进行了测试。观察到的检测性能与特定环境特异性阈值调整后的最新方法相当。
translated by 谷歌翻译