由于黑匣子的解释越来越多地用于在高赌注设置中建立模型可信度,重要的是确保这些解释准确可靠。然而,事先工作表明,最先进的技术产生的解释是不一致的,不稳定的,并且提供了对它们的正确性和可靠性的极少了解。此外,这些方法也在计算上效率低下,并且需要显着的超参数调谐。在本文中,我们通过开发一种新的贝叶斯框架来涉及用于产生当地解释以及相关的不确定性来解决上述挑战。我们将本框架实例化以获取贝叶斯版本的石灰和kernelshap,其为特征重要性输出可靠的间隔,捕获相关的不确定性。由此产生的解释不仅使我们能够对其质量进行具体推论(例如,有95%的几率是特征重要性在给定范围内),但也是高度一致和稳定的。我们执行了一个详细的理论分析,可以利用上述不确定性来估计对样品的扰动有多少,以及如何进行更快的收敛。这项工作首次尝试在一次拍摄中通过流行的解释方法解决几个关键问题,从而以计算上有效的方式产生一致,稳定和可靠的解释。具有多个真实世界数据集和用户研究的实验评估表明,提出的框架的功效。
translated by 谷歌翻译
As machine learning black boxes are increasingly being deployed in domains such as healthcare and criminal justice, there is growing emphasis on building tools and techniques for explaining these black boxes in an interpretable manner. Such explanations are being leveraged by domain experts to diagnose systematic errors and underlying biases of black boxes. In this paper, we demonstrate that post hoc explanations techniques that rely on input perturbations, such as LIME and SHAP, are not reliable. Specifically, we propose a novel scaffolding technique that effectively hides the biases of any given classifier by allowing an adversarial entity to craft an arbitrary desired explanation. Our approach can be used to scaffold any biased classifier in such a way that its predictions on the input data distribution still remain biased, but the post hoc explanations of the scaffolded classifier look innocuous. Using extensive evaluation with multiple real world datasets (including COMPAS), we demonstrate how extremely biased (racist) classifiers crafted by our framework can easily fool popular explanation techniques such as LIME and SHAP into generating innocuous explanations which do not reflect the underlying biases. CCS CONCEPTS• Computing methodologies → Machine learning; Supervised learning by classification; • Human-centered computing → Interactive systems and tools.
translated by 谷歌翻译
Post-hoc explanation methods have become increasingly depended upon for understanding black-box classifiers in high-stakes applications, precipitating a need for reliable explanations. While numerous explanation methods have been proposed, recent works have shown that many existing methods can be inconsistent or unstable. In addition, high-performing classifiers are often highly nonlinear and can exhibit complex behavior around the decision boundary, leading to brittle or misleading local explanations. Therefore, there is an impending need to quantify the uncertainty of such explanation methods in order to understand when explanations are trustworthy. We introduce a novel uncertainty quantification method parameterized by a Gaussian Process model, which combines the uncertainty approximation of existing methods with a novel geodesic-based similarity which captures the complexity of the target black-box decision boundary. The proposed framework is highly flexible; it can be used with any black-box classifier and feature attribution method to amortize uncertainty estimates for explanations. We show theoretically that our proposed geodesic-based kernel similarity increases with the complexity of the decision boundary. Empirical results on multiple tabular and image datasets show that our decision boundary-aware uncertainty estimate improves understanding of explanations as compared to existing methods.
translated by 谷歌翻译
由于事后解释方法越来越多地被利用以在高风险环境中解释复杂的模型,因此确保在包括少数群体在内的各个种群亚组中,所得解释的质量始终高。例如,与与其他性别相关的实例(例如,女性)相关的实例(例如,女性)的说明不应该是与其他性别相关的解释。但是,几乎没有研究能够评估通过最先进的解释方法在输出的解释质量上是否存在这种基于群体的差异。在这项工作中,我们通过启动确定基于群体的解释质量差异的研究来解决上述差距。为此,我们首先概述了构成解释质量以及差异尤其有问题的关键属性。然后,我们利用这些属性提出了一个新的评估框架,该框架可以通过最新方法定量测量解释质量的差异。使用此框架,我们进行了严格的经验分析,以了解是否出现了解释质量的基于小组的差异。我们的结果表明,当所解释的模型复杂且高度非线性时,这种差异更可能发生。此外,我们还观察到某些事后解释方法(例如,综合梯度,外形)更有可能表现出上述差异。据我们所知,这项工作是第一个强调和研究解释质量差异的问题。通过这样做,我们的工作阐明了以前未开发的方式,其中解释方法可能在现实世界决策中引入不公平。
translated by 谷歌翻译
尽管在最近的文献中提出了几种类型的事后解释方法(例如,特征归因方法),但在系统地以有效且透明的方式进行系统基准测试这些方法几乎没有工作。在这里,我们介绍了OpenXai,这是一个全面且可扩展的开源框架,用于评估和基准测试事后解释方法。 OpenXAI由以下关键组件组成:(i)灵活的合成数据生成器以及各种现实世界数据集,预训练的模型和最新功能属性方法的集合,(ii)开源实现22个定量指标,用于评估忠诚,稳定性(稳健性)和解释方法的公平性,以及(iii)有史以来第一个公共XAI XAI排行榜对基准解释。 OpenXAI很容易扩展,因为用户可以轻松地评估自定义说明方法并将其纳入我们的排行榜。总体而言,OpenXAI提供了一种自动化的端到端管道,该管道不仅简化并标准化了事后解释方法的评估,而且还促进了基准这些方法的透明度和可重复性。 OpenXAI数据集和数据加载程序,最先进的解释方法的实现和评估指标以及排行榜,可在https://open-xai.github.io/上公开获得。
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
基于Shapley值的功能归因在解释机器学习模型中很受欢迎。但是,从理论和计算的角度来看,它们的估计是复杂的。我们将这种复杂性分解为两个因素:(1)〜删除特征信息的方法,以及(2)〜可拖动估计策略。这两个因素提供了一种天然镜头,我们可以更好地理解和比较24种不同的算法。基于各种特征删除方法,我们描述了多种类型的Shapley值特征属性和计算每个类型的方法。然后,基于可进行的估计策略,我们表征了两个不同的方法家族:模型 - 不合时宜的和模型特定的近似值。对于模型 - 不合稳定的近似值,我们基准了广泛的估计方法,并将其与Shapley值的替代性但等效的特征联系起来。对于特定于模型的近似值,我们阐明了对每种方法的线性,树和深模型的障碍至关重要的假设。最后,我们确定了文献中的差距以及有希望的未来研究方向。
translated by 谷歌翻译
由于机器学习模型变得越来越复杂和他们的应用程序变得越来越高赌注的,用于解释模型预测工具已经变得越来越重要。这促使模型explainability研究乱舞,并已引起了功能属性的方法,如石灰和SHAP。尽管它们的广泛使用,评价和比较不同功能属性的方法仍然具有挑战性:评价非常需要人的研究,以及实证评价指标往往是数据密集型或真实世界的数据集的计算望而却步。与基准特征归属算法库以及一套综合数据集:在这项工作中,我们通过释放XAI,台式解决这个问题。不同于现实世界的数据集,合成数据集允许那些需要评估地面实况夏普利值等指标的条件期望值的高效计算。我们释放合成的数据集提供了多种可配置模拟真实世界的数据参数。我们通过在多个评价指标和跨多种设置基准流行explainability技术展示我们的图书馆的力量。我们图书馆的多功能性和效率将有助于研究人员把他们的explainability方法从开发到部署。我们的代码可在https://github.com/abacusai/xai-bench。
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
A critical problem in post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, SHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods which demonstrates that no single method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
translated by 谷歌翻译
我们介绍了一个简单而直观的框架,该框架通过对输入特征重要性的概率评估来提供统计模型的定量解释。核心思想来自利用Dirichlet分布来定义输入功能的重要性,并通过大致贝叶斯推断学习。学到的重要性具有概率的解释,并提供了每个输入特征与模型输出的相对重要性,从而评估了对其重要性量化的信心。由于在解释上使用了Dirichlet分布,因此我们可以定义封闭形式的差异来衡量不同模型下所学到的重要性之间的相似性。我们利用这种差异来研究特征重要性的解释性权衡,并在现代机器学习中的基本概念(例如隐私和公平)中进行了折衷。此外,BIF可以在两个层面上工作:全局说明(所有数据实例中的特征重要性)和局部说明(每个数据实例的个人特征重要性)。考虑到表格数据集和图像数据集,我们显示了方法对各种合成和真实数据集的有效性。该代码可在https://github.com/kamadforge/featimp_dp上获得。
translated by 谷歌翻译
Monumental advancements in artificial intelligence (AI) have lured the interest of doctors, lenders, judges, and other professionals. While these high-stakes decision-makers are optimistic about the technology, those familiar with AI systems are wary about the lack of transparency of its decision-making processes. Perturbation-based post hoc explainers offer a model agnostic means of interpreting these systems while only requiring query-level access. However, recent work demonstrates that these explainers can be fooled adversarially. This discovery has adverse implications for auditors, regulators, and other sentinels. With this in mind, several natural questions arise - how can we audit these black box systems? And how can we ascertain that the auditee is complying with the audit in good faith? In this work, we rigorously formalize this problem and devise a defense against adversarial attacks on perturbation-based explainers. We propose algorithms for the detection (CAD-Detect) and defense (CAD-Defend) of these attacks, which are aided by our novel conditional anomaly detection approach, KNN-CAD. We demonstrate that our approach successfully detects whether a black box system adversarially conceals its decision-making process and mitigates the adversarial attack on real-world data for the prevalent explainers, LIME and SHAP.
translated by 谷歌翻译
最先进的实体匹配(EM)方法很难解释,并且为EM带来可解释的AI具有重要的价值。不幸的是,大多数流行的解释性方法无法开箱即用,需要适应。在本文中,我们确定了将本地事后特征归因方法应用于实体匹配的三个挑战:跨记录的交互作用,不匹配的解释和灵敏度变化。我们提出了新颖的模型 - 静态和模式 - 富含模型的方法柠檬柠檬,该方法通过(i)产生双重解释来避免交叉记录的互动效果来应对所有三个挑战,(ii)介绍了归因潜力的新颖概念,以解释两个记录如何能够拥有如何具有匹配,(iii)自动选择解释粒度以匹配匹配器和记录对的灵敏度。公共数据集上的实验表明,所提出的方法更忠实于匹配器,并且在帮助用户了解匹配器的决策边界的工作中比以前的工作更具忠诚度。此外,用户研究表明,与标准的解释相比石灰的适应。
translated by 谷歌翻译
在本文中,我们对在表格数据的情况下进行了详尽的理论分析。我们证明,在较大的样本限制中,可以按照算法参数的函数以及与黑框模型相关的一些期望计算来计算表格石灰提供的可解释系数。当要解释的函数具有一些不错的代数结构(根据坐标的子集,线性,乘法或稀疏)时,我们的分析提供了对Lime提供的解释的有趣见解。这些可以应用于一系列机器学习模型,包括高斯内核或卡车随机森林。例如,对于线性函数,我们表明Lime具有理想的属性,可以提供与函数系数成正比的解释,以解释并忽略该函数未使用的坐标来解释。对于基于分区的回归器,另一方面,我们表明石灰会产生可能提供误导性解释的不希望的人工制品。
translated by 谷歌翻译
我们在电影推荐任务上评估了两种流行的本地解释性技术,即石灰和外形。我们发现,这两种方法的行为取决于数据集的稀疏性。在数据集的密集段中,石灰的表现要好,而在稀疏段中,shap的表现更好。我们将这种差异追溯到石灰和摇动​​基础估计量的不同偏差变化特征。我们发现,与石灰相比,SHAP在数据的稀疏段中表现出较低的方差。我们将这种较低的差异归因于Shap和Lime中缺少的完整性约束属性。该约束是正规化器,因此增加了Shap估计器的偏差,但会降低其差异,从而导致良好的偏见差异权衡,尤其是在高稀疏数据设置中。有了这个见解,我们将相同的约束引入石灰,并制定了一个新颖的局部解释框架,称为完整性约束的石灰(攀爬),比石灰优于石灰,速度比Shap更快。
translated by 谷歌翻译
Despite widespread adoption, machine learning models remain mostly black boxes. Understanding the reasons behind predictions is, however, quite important in assessing trust, which is fundamental if one plans to take action based on a prediction, or when choosing whether to deploy a new model. Such understanding also provides insights into the model, which can be used to transform an untrustworthy model or prediction into a trustworthy one.In this work, we propose LIME, a novel explanation technique that explains the predictions of any classifier in an interpretable and faithful manner, by learning an interpretable model locally around the prediction. We also propose a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization problem. We demonstrate the flexibility of these methods by explaining different models for text (e.g. random forests) and image classification (e.g. neural networks). We show the utility of explanations via novel experiments, both simulated and with human subjects, on various scenarios that require trust: deciding if one should trust a prediction, choosing between models, improving an untrustworthy classifier, and identifying why a classifier should not be trusted.
translated by 谷歌翻译
黑匣子机器学习模型的解释性是至关重要的,特别是在部署在药物或自主汽车等关键应用中。现有方法为模型的预测产生了解释,然而,如何评估这种解释的质量和可靠性仍然是一个开放的问题。在本文中,我们进一步迈出了一步,以便为从业者提供工具来判断解释的可信度。为此,我们通过测量一系列多样化的替代替代解释者中的序数共识来产生对给定解释的不确定性的估计。虽然我们通过使用集合技术鼓励多样性,但我们提出并分析了指标,以通过评级方案汇总解释者集合中所包含的信息。我们通过关于最先进的卷积神经网络集合的实验来凭经验说明了这种方法的性质。此外,通过量身定制的可视化,我们展示了不确定性估计为用户提供了超出标准代理解释者引起的具体可操作见解的具体示例。
translated by 谷歌翻译
研究人员提出了多种模型解释方法,但目前尚不清楚大多数方法如何相关或何时一种方法比另一种方法更可取。我们研究了文献,发现许多方法都是基于通过删除来解释的共同原理 - 本质上是测量从模型中删除一组特征的影响。这些方法在几个方面有所不同,因此我们为基于删除的解释开发了一个沿三个维度表征每个方法的框架:1)该方法如何删除特征,2)该方法解释的模型行为以及3)方法如何汇总每个方法功能的影响。我们的框架统一了26种现有方法,其中包括几种最广泛使用的方法(Shap,Lime,有意义的扰动,排列测试)。揭露这些方法之间的基本相似性使用户能够推荐使用哪种工具,并为正在进行的模型解释性研究提出了有希望的方向。
translated by 谷歌翻译
可解释的机器学习提供了有关哪些因素推动了黑盒系统的一定预测以及是否信任高风险决策或大规模部署的洞察力。现有方法主要集中于选择解释性输入功能,这些功能遵循本地添加剂或实例方法。加性模型使用启发式采样扰动来依次学习实例特定解释器。因此,该过程效率低下,并且容易受到条件较差的样品的影响。同时,实例技术直接学习本地采样分布,并可以从其他输入中利用全球信息。但是,由于严格依赖预定义的功能,他们只能解释单一级预测并在不同设置上遇到不一致的情况。这项工作利用了这两种方法的优势,并提出了一个全球框架,用于同时学习多个目标类别的本地解释。我们还提出了一种自适应推理策略,以确定特定实例的最佳功能数量。我们的模型解释器极大地超过了忠诚的添加和实例的对应物,而在各种数据集和Black-box模型体系结构上获得了高水平的简洁性。
translated by 谷歌翻译
Interpretability provides a means for humans to verify aspects of machine learning (ML) models and empower human+ML teaming in situations where the task cannot be fully automated. Different contexts require explanations with different properties. For example, the kind of explanation required to determine if an early cardiac arrest warning system is ready to be integrated into a care setting is very different from the type of explanation required for a loan applicant to help determine the actions they might need to take to make their application successful. Unfortunately, there is a lack of standardization when it comes to properties of explanations: different papers may use the same term to mean different quantities, and different terms to mean the same quantity. This lack of a standardized terminology and categorization of the properties of ML explanations prevents us from both rigorously comparing interpretable machine learning methods and identifying what properties are needed in what contexts. In this work, we survey properties defined in interpretable machine learning papers, synthesize them based on what they actually measure, and describe the trade-offs between different formulations of these properties. In doing so, we enable more informed selection of task-appropriate formulations of explanation properties as well as standardization for future work in interpretable machine learning.
translated by 谷歌翻译