研究人员提出了多种模型解释方法,但目前尚不清楚大多数方法如何相关或何时一种方法比另一种方法更可取。我们研究了文献,发现许多方法都是基于通过删除来解释的共同原理 - 本质上是测量从模型中删除一组特征的影响。这些方法在几个方面有所不同,因此我们为基于删除的解释开发了一个沿三个维度表征每个方法的框架:1)该方法如何删除特征,2)该方法解释的模型行为以及3)方法如何汇总每个方法功能的影响。我们的框架统一了26种现有方法,其中包括几种最广泛使用的方法(Shap,Lime,有意义的扰动,排列测试)。揭露这些方法之间的基本相似性使用户能够推荐使用哪种工具,并为正在进行的模型解释性研究提出了有希望的方向。
translated by 谷歌翻译
基于Shapley值的功能归因在解释机器学习模型中很受欢迎。但是,从理论和计算的角度来看,它们的估计是复杂的。我们将这种复杂性分解为两个因素:(1)〜删除特征信息的方法,以及(2)〜可拖动估计策略。这两个因素提供了一种天然镜头,我们可以更好地理解和比较24种不同的算法。基于各种特征删除方法,我们描述了多种类型的Shapley值特征属性和计算每个类型的方法。然后,基于可进行的估计策略,我们表征了两个不同的方法家族:模型 - 不合时宜的和模型特定的近似值。对于模型 - 不合稳定的近似值,我们基准了广泛的估计方法,并将其与Shapley值的替代性但等效的特征联系起来。对于特定于模型的近似值,我们阐明了对每种方法的线性,树和深模型的障碍至关重要的假设。最后,我们确定了文献中的差距以及有希望的未来研究方向。
translated by 谷歌翻译
变形金刚已成为计算机视觉中的默认架构,但是了解驱动其预测的原因仍然是一个具有挑战性的问题。当前的解释方法依赖于注意值或输入梯度,但是这些方法对模型的依赖性有限。Shapley值在理论上提供了一种替代方案,但是它们的计算成本使它们对于大型高维模型不切实际。在这项工作中,我们旨在使Shapley价值观对视觉变压器(VIT)实用。为此,我们首先利用一种注意力掩盖方法来评估VIT的部分信息,然后我们开发了一种通过单独的,学习的解释器模型来生成Shapley价值解释的程序。我们的实验将沙普利值与许多基线方法(例如,注意推出,Gradcam,LRP)进行了比较,我们发现我们的方法提供了比任何现有的VIT方法更准确的解释。
translated by 谷歌翻译
Understanding why a model makes a certain prediction can be as crucial as the prediction's accuracy in many applications. However, the highest accuracy for large modern datasets is often achieved by complex models that even experts struggle to interpret, such as ensemble or deep learning models, creating a tension between accuracy and interpretability. In response, various methods have recently been proposed to help users interpret the predictions of complex models, but it is often unclear how these methods are related and when one method is preferable over another. To address this problem, we present a unified framework for interpreting predictions, SHAP (SHapley Additive exPlanations). SHAP assigns each feature an importance value for a particular prediction. Its novel components include: (1) the identification of a new class of additive feature importance measures, and (2) theoretical results showing there is a unique solution in this class with a set of desirable properties. The new class unifies six existing methods, notable because several recent methods in the class lack the proposed desirable properties. Based on insights from this unification, we present new methods that show improved computational performance and/or better consistency with human intuition than previous approaches.
translated by 谷歌翻译
即使有效,模型的使用也必须伴随着转换数据的各个级别的理解(上游和下游)。因此,需求增加以定义单个数据与算法可以根据其分析可以做出的选择(例如,一种产品或一种促销报价的建议,或代表风险的保险费率)。模型用户必须确保模型不会区分,并且也可以解释其结果。本文介绍了模型解释的重要性,并解决了模型透明度的概念。在保险环境中,它专门说明了如何使用某些工具来强制执行当今可以利用机器学习的精算模型的控制。在一个简单的汽车保险中损失频率估计的示例中,我们展示了一些解释性方法的兴趣,以适应目标受众的解释。
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
Interpretability provides a means for humans to verify aspects of machine learning (ML) models and empower human+ML teaming in situations where the task cannot be fully automated. Different contexts require explanations with different properties. For example, the kind of explanation required to determine if an early cardiac arrest warning system is ready to be integrated into a care setting is very different from the type of explanation required for a loan applicant to help determine the actions they might need to take to make their application successful. Unfortunately, there is a lack of standardization when it comes to properties of explanations: different papers may use the same term to mean different quantities, and different terms to mean the same quantity. This lack of a standardized terminology and categorization of the properties of ML explanations prevents us from both rigorously comparing interpretable machine learning methods and identifying what properties are needed in what contexts. In this work, we survey properties defined in interpretable machine learning papers, synthesize them based on what they actually measure, and describe the trade-offs between different formulations of these properties. In doing so, we enable more informed selection of task-appropriate formulations of explanation properties as well as standardization for future work in interpretable machine learning.
translated by 谷歌翻译
机器学习方法在做出预测方面越来越好,但与此同时,它们也变得越来越复杂和透明。结果,通常依靠解释器为这些黑框预测模型提供可解释性。作为关键的诊断工具,重要的是这些解释者本身是可靠的。在本文中,我们关注可靠性的一个特定方面,即解释器应为类似的数据输入提供类似的解释。我们通过引入和定义解释者的敏锐度,类似于分类器的敏锐性来形式化这个概念。我们的形式主义灵感来自概率lipchitzness的概念,该概念捕捉了功能局部平滑度的可能性。对于各种解释者(例如,摇摆,上升,CXPLAIN),我们为这些解释者的敏锐性提供了下限保证,鉴于预测函数的lipschitzness。这些理论上的结果表明,局部平滑的预测函数为局部强大的解释提供了自身。我们对模拟和真实数据集进行经验评估这些结果。
translated by 谷歌翻译
随着现代复杂的神经网络不断破坏记录并解决更严重的问题,它们的预测也变得越来越少。目前缺乏解释性通常会破坏敏感设置中精确的机器学习工具的部署。在这项工作中,我们提出了一种基于Shapley系数的层次扩展的图像分类的模型 - 不足的解释方法 - 层次结构(H-SHAP)(H-SHAP) - 解决了当前方法的某些局限性。与其他基于沙普利的解释方法不同,H-shap是可扩展的,并且可以计算而无需近似。在某些分布假设下,例如在多个实例学习中常见的假设,H-shap检索了确切的Shapley系数,并具有指数改善的计算复杂性。我们将我们的分层方法与基于Shapley的流行基于Shapley和基于Shapley的方法进行比较,而基于Shapley的方法,医学成像方案以及一般的计算机视觉问题,表明H-Shap在准确性和运行时都超过了最先进的状态。代码和实验已公开可用。
translated by 谷歌翻译
Shap是一种衡量机器学习模型中可变重要性的流行方法。在本文中,我们研究了用于估计外形评分的算法,并表明它是功能性方差分析分解的转换。我们使用此连接表明,在Shap近似中的挑战主要与选择功能分布的选择以及估计的$ 2^p $ ANOVA条款的数量有关。我们认为,在这种情况下,机器学习解释性和敏感性分析之间的联系是有照明的,但是直接的实际后果并不明显,因为这两个领域面临着不同的约束。机器学习的解释性问题模型可评估,但通常具有数百个(即使不是数千个)功能。敏感性分析通常处理物理或工程的模型,这些模型可能非常耗时,但在相对较小的输入空间上运行。
translated by 谷歌翻译
众所周知,端到端的神经NLP体系结构很难理解,这引起了近年来为解释性建模的许多努力。模型解释的基本原则是忠诚,即,解释应准确地代表模型预测背后的推理过程。这项调查首先讨论了忠诚的定义和评估及其对解释性的意义。然后,我们通过将方法分为五类来介绍忠实解释的最新进展:相似性方法,模型内部结构的分析,基于反向传播的方法,反事实干预和自我解释模型。每个类别将通过其代表性研究,优势和缺点来说明。最后,我们从它们的共同美德和局限性方面讨论了上述所有方法,并反思未来的工作方向忠实的解释性。对于有兴趣研究可解释性的研究人员,这项调查将为该领域提供可访问且全面的概述,为进一步探索提供基础。对于希望更好地了解自己的模型的用户,该调查将是一项介绍性手册,帮助选择最合适的解释方法。
translated by 谷歌翻译
在人类循环机器学习应用程序的背景下,如决策支持系统,可解释性方法应在不使用户等待的情况下提供可操作的见解。在本文中,我们提出了加速的模型 - 不可知论解释(ACME),一种可解释的方法,即在全球和本地层面迅速提供特征重要性分数。可以将acme应用于每个回归或分类模型的后验。 ACME计算功能排名不仅提供了一个什么,但它还提供了一个用于评估功能值的变化如何影响模型预测的原因 - 如果分析工具。我们评估了综合性和现实世界数据集的建议方法,同时也与福芙添加剂解释(Shap)相比,我们制作了灵感的方法,目前是最先进的模型无关的解释性方法。我们在生产解释的质量方面取得了可比的结果,同时急剧减少计算时间并为全局和局部解释提供一致的可视化。为了促进该领域的研究,为重复性,我们还提供了一种存储库,其中代码用于实验。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
由于机器学习模型变得越来越复杂和他们的应用程序变得越来越高赌注的,用于解释模型预测工具已经变得越来越重要。这促使模型explainability研究乱舞,并已引起了功能属性的方法,如石灰和SHAP。尽管它们的广泛使用,评价和比较不同功能属性的方法仍然具有挑战性:评价非常需要人的研究,以及实证评价指标往往是数据密集型或真实世界的数据集的计算望而却步。与基准特征归属算法库以及一套综合数据集:在这项工作中,我们通过释放XAI,台式解决这个问题。不同于现实世界的数据集,合成数据集允许那些需要评估地面实况夏普利值等指标的条件期望值的高效计算。我们释放合成的数据集提供了多种可配置模拟真实世界的数据参数。我们通过在多个评价指标和跨多种设置基准流行explainability技术展示我们的图书馆的力量。我们图书馆的多功能性和效率将有助于研究人员把他们的explainability方法从开发到部署。我们的代码可在https://github.com/abacusai/xai-bench。
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
我们在电影推荐任务上评估了两种流行的本地解释性技术,即石灰和外形。我们发现,这两种方法的行为取决于数据集的稀疏性。在数据集的密集段中,石灰的表现要好,而在稀疏段中,shap的表现更好。我们将这种差异追溯到石灰和摇动​​基础估计量的不同偏差变化特征。我们发现,与石灰相比,SHAP在数据的稀疏段中表现出较低的方差。我们将这种较低的差异归因于Shap和Lime中缺少的完整性约束属性。该约束是正规化器,因此增加了Shap估计器的偏差,但会降低其差异,从而导致良好的偏见差异权衡,尤其是在高稀疏数据设置中。有了这个见解,我们将相同的约束引入石灰,并制定了一个新颖的局部解释框架,称为完整性约束的石灰(攀爬),比石灰优于石灰,速度比Shap更快。
translated by 谷歌翻译
Artificial intelligence(AI) systems based on deep neural networks (DNNs) and machine learning (ML) algorithms are increasingly used to solve critical problems in bioinformatics, biomedical informatics, and precision medicine. However, complex DNN or ML models that are unavoidably opaque and perceived as black-box methods, may not be able to explain why and how they make certain decisions. Such black-box models are difficult to comprehend not only for targeted users and decision-makers but also for AI developers. Besides, in sensitive areas like healthcare, explainability and accountability are not only desirable properties of AI but also legal requirements -- especially when AI may have significant impacts on human lives. Explainable artificial intelligence (XAI) is an emerging field that aims to mitigate the opaqueness of black-box models and make it possible to interpret how AI systems make their decisions with transparency. An interpretable ML model can explain how it makes predictions and which factors affect the model's outcomes. The majority of state-of-the-art interpretable ML methods have been developed in a domain-agnostic way and originate from computer vision, automated reasoning, or even statistics. Many of these methods cannot be directly applied to bioinformatics problems, without prior customization, extension, and domain adoption. In this paper, we discuss the importance of explainability with a focus on bioinformatics. We analyse and comprehensively overview of model-specific and model-agnostic interpretable ML methods and tools. Via several case studies covering bioimaging, cancer genomics, and biomedical text mining, we show how bioinformatics research could benefit from XAI methods and how they could help improve decision fairness.
translated by 谷歌翻译
与经典的统计学习方法相比,机器和深度学习生存模型表现出相似甚至改进事件的预测能力,但太复杂了,无法被人类解释。有几种模型不合时宜的解释可以克服这个问题。但是,没有一个直接解释生存函数预测。在本文中,我们介绍了Survhap(t),这是第一个允许解释生存黑盒模型的解释。它基于Shapley添加性解释,其理论基础稳定,并在机器学习从业人员中广泛采用。拟议的方法旨在增强精确诊断和支持领域的专家做出决策。关于合成和医学数据的实验证实,survhap(t)可以检测具有时间依赖性效果的变量,并且其聚集是对变量对预测的重要性的决定因素,而不是存活。 survhap(t)是模型不可屈服的,可以应用于具有功能输出的所有型号。我们在http://github.com/mi2datalab/survshap中提供了python中时间相关解释的可访问实现。
translated by 谷歌翻译
测量黑匣子预测算法中变量重要性的最流行方法是利用合成输入,这些输入结合了来自多个受试者的预测变量。这些输入可能是不可能的,身体上不可能的,甚至在逻辑上是不可能的。结果,对这种情况的预测可以基于数据,这与对黑匣子的训练非常不同。我们认为,当解释使用此类值时,用户不能相信预测算法的决定的解释。取而代之的是,我们主张一种称为同类沙普利的方法,该方法基于经济游戏理论,与大多数其他游戏理论方法不同,它仅使用实际观察到的数据来量化可变重要性。莎普利队的同伙通过缩小判断的主题的缩小,被认为与一个或多个功能上的目标主题相似。如果使用它来缩小队列对队列平均值有很大的不同,则功能很重要。我们在算法公平问题上进行了说明,其中必须将重要性归因于未经训练模型的保护变量。对于每个主题和每个预测变量,我们可以计算该预测因子对受试者的预测响应或对其实际响应的重要性。这些值可以汇总,例如在所有黑色受试者上,我们提出了一个贝叶斯引导程序来量化个人和骨料莎普利值的不确定性。
translated by 谷歌翻译
由于它们在建模复杂的问题和处理高维数据集的有效性,因此已显示深神网络(DNN)在广泛的应用领域中的传统机器学习算法优于传统的机器学习算法。但是,许多现实生活数据集具有越来越高的维度,其中大量功能可能与手头的任务无关。包含此类功能不仅会引入不必要的噪声,还会提高计算复杂性。此外,由于许多特征之间的非线性和依赖性高,DNN模型往往不可避免地是不透明的,并且被视为黑盒方法,因为它们的内部功能不佳。解释良好的模型可以识别具有统计学意义的特征,并解释其影响模型结果的方式。在本文中,我们提出了一种有效的方法,可以在高维数据集的情况下提高黑框模型的分类任务。为此,我们首先在高维数据集上训练黑框模型,以了解执行分类的嵌入。为了分解黑框模型的内部工作原理并确定TOP-K重要特征,我们采用了不同的探测和扰动技术。然后,我们通过在TOP-K特征空间上通过可解释的替代模型来近似黑框模型的行为。最后,我们从替代模型中得出决策规则和本地解释,以解释个人决策。当在不同数据集上测试,尺寸在50到20,000之间的不同数据集上进行测试时,我们的方法优于最先进的方法,例如TABNET,XGBOOST和基于Shap的可解释性技术。
translated by 谷歌翻译