Reliable uncertainty quantification in deep neural networks is very crucial in safety-critical applications such as automated driving for trustworthy and informed decision-making. Assessing the quality of uncertainty estimates is challenging as ground truth for uncertainty estimates is not available. Ideally, in a well-calibrated model, uncertainty estimates should perfectly correlate with model error. We propose a novel error aligned uncertainty optimization method and introduce a trainable loss function to guide the models to yield good quality uncertainty estimates aligning with the model error. Our approach targets continuous structured prediction and regression tasks, and is evaluated on multiple datasets including a large-scale vehicle motion prediction task involving real-world distributional shifts. We demonstrate that our method improves average displacement error by 1.69% and 4.69%, and the uncertainty correlation with model error by 17.22% and 19.13% as quantified by Pearson correlation coefficient on two state-of-the-art baselines.
translated by 谷歌翻译
大多数机器学习模型在假设培训,测试和部署数据是独立的和相同分布的假设下运行(i.i.d.)。这种假设通常在自然设置中通常保持真实。通常,部署数据受各种类型的分布换档。模型性能的大小与数据集分发的这种转变成比例。因此,有必要评估模型的不确定性和稳健性,以分配转变,以便在真实数据上实现其预期绩效的现实估计。提供评估不确定性和模型的鲁棒性的现有方法缺乏,并且通常无法涂漆完整的图片。此外,到目前为止大多数分析主要专注于分类任务。在本文中,我们使用Shifts天气预报数据集提出了更多的始终回归任务的有洞察力度量。我们还提供了使用这些指标的基线方法的评估。
translated by 谷歌翻译
分配转移或培训数据和部署数据之间的不匹配是在高风险工业应用中使用机器学习的重要障碍,例如自动驾驶和医学。这需要能够评估ML模型的推广以及其不确定性估计的质量。标准ML基线数据集不允许评估这些属性,因为培训,验证和测试数据通常相同分布。最近,已经出现了一系列专用基准测试,其中包括分布匹配和转移的数据。在这些基准测试中,数据集在任务的多样性以及其功能的数据模式方面脱颖而出。虽然大多数基准测试由2D图像分类任务主导,但Shifts包含表格天气预测,机器翻译和车辆运动预测任务。这使得可以评估模型的鲁棒性属性,并可以得出多种工业规模的任务以及通用或直接适用的特定任务结论。在本文中,我们扩展了偏移数据集,其中两个数据集来自具有高社会重要性的工业高风险应用程序。具体而言,我们考虑了3D磁共振脑图像中白质多发性硬化病变的分割任务以及海洋货物容器中功耗的估计。两项任务均具有无处不在的分配变化和由于错误成本而构成严格的安全要求。这些新数据集将使研究人员能够进一步探索新情况下的强大概括和不确定性估计。在这项工作中,我们提供了两个任务的数据集和基线结果的描述。
translated by 谷歌翻译
最近实现了更准确的短期预测的数据驱动的空气质量预测。尽管取得了成功,但大多数目前的数据驱动解决方案都缺乏适当的模型不确定性的量化,以传达信任预测的程度。最近,在概率深度学习中已经制定了几种估计不确定性的实用工具。但是,在空气质量预测领域的域中没有经验应用和广泛的比较这些工具。因此,这项工作在空气质量预测的真实环境中应用了最先进的不确定性量化。通过广泛的实验,我们描述了培训概率模型,并根据经验性能,信心可靠性,置信度估计和实际适用性评估其预测性不确定性。我们还使用空气质量数据中固有的“自由”对抗培训和利用时间和空间相关性提出改善这些模型。我们的实验表明,所提出的模型比以前的工作更好地在量化数据驱动空气质量预测中的不确定性方面表现出。总体而言,贝叶斯神经网络提供了更可靠的不确定性估计,但可能挑战实施和规模。其他可扩展方法,如深合奏,蒙特卡罗(MC)辍学和随机重量平均-Gaussian(SWAG)可以执行良好,如果正确应用,但具有不同的权衡和性能度量的轻微变化。最后,我们的结果表明了不确定性估计的实际影响,并证明了,实际上,概率模型更适合提出知情决策。代码和数据集可用于\ url {https:/github.com/abdulmajid-murad/deep_probabilistic_forecast}
translated by 谷歌翻译
为了规划一个安全有效的路线,自主车辆应该预测其周围其他代理的未来动作。运动预测是一个极其具有挑战性的任务,最近获得了研究界的重大关注。在这项工作中,我们对纯粹基于变压器神经网络的不确定性意识的运动预测,为其呈现了一个简单而强烈的基线,这在域变化条件下表明了其有效性。虽然易于实施,所提出的方法实现了竞争性能,并在2021转移车辆运动预测竞争中获得1美元$ ^ {St}美元。
translated by 谷歌翻译
非常希望知道模型的预测是多么不确定,特别是对于复杂的模型和难以理解的模型,如深度学习。虽然在扩散加权MRI中使用深度学习方法,但事先作品没有解决模型不确定性的问题。在这里,我们提出了一种深入的学习方法来估计扩散张量并计算估计不确定性。数据相关的不确定性由网络直接计算,并通过损耗衰减学习。使用Monte Carlo辍学来计算模型不确定性。我们还提出了一种评估预测不确定性的质量的新方法。我们将新方法与标准最小二乘张量估计和基于引导的不确定性计算技术进行比较。我们的实验表明,当测量数量小时,深度学习方法更准确,并且其不确定性预测比标准方法更好地校准。我们表明,新方法计算的估计不确定性可以突出显示模型的偏置,检测域移位,并反映测量中的噪声强度。我们的研究表明了基于深度学习的扩散MRI分析中建模预测不确定性的重要性和实际价值。
translated by 谷歌翻译
基于机器学习的数据驱动方法具有加速原子结构的计算分析。在这种情况下,可靠的不确定性估计对于评估对预测和实现决策的信心很重要。然而,机器学习模型可以产生严重校准的不确定性估计,因此仔细检测和处理不确定性至关重要。在这项工作中,我们扩展了一种消息,该消息通过神经网络,专门用于预测分子和材料的性质,具有校准的概率预测分布。本文提出的方法与先前的工作不同,通过考虑统一框架中的炼体和认知的不确定性,并通过重新校准未经证明数据的预测分布。通过计算机实验,我们表明我们的方法导致准确的模型,用于预测两种公共分子基准数据集,QM9和PC9的训练数据分布良好的分子形成能量。该方法提供了一种用于训练和评估神经网络集合模型的一般框架,该模型能够产生具有良好校准的不确定性估计的分子性质的准确预测。
translated by 谷歌翻译
尽管对安全机器学习的重要性,但神经网络的不确定性量化远未解决。估计神经不确定性的最先进方法通常是混合的,将参数模型与显式或隐式(基于辍学的)合并结合。我们采取另一种途径,提出一种新颖的回归任务的不确定量化方法,纯粹是非参数的。从技术上讲,它通过基于辍学的子网分布来捕获梯级不确定性。这是通过一个新目标来实现的,这使得标签分布与模型分布之间的Wasserstein距离最小化。广泛的经验分析表明,在生产更准确和稳定的不确定度估计方面,Wasserstein丢失在香草测试数据以及在分类转移的情况下表现出最先进的方法。
translated by 谷歌翻译
Modern machine learning methods including deep learning have achieved great success in predictive accuracy for supervised learning tasks, but may still fall short in giving useful estimates of their predictive uncertainty. Quantifying uncertainty is especially critical in real-world settings, which often involve input distributions that are shifted from the training distribution due to a variety of factors including sample bias and non-stationarity. In such settings, well calibrated uncertainty estimates convey information about when a model's output should (or should not) be trusted. Many probabilistic deep learning methods, including Bayesian-and non-Bayesian methods, have been proposed in the literature for quantifying predictive uncertainty, but to our knowledge there has not previously been a rigorous largescale empirical comparison of these methods under dataset shift. We present a largescale benchmark of existing state-of-the-art methods on classification problems and investigate the effect of dataset shift on accuracy and calibration. We find that traditional post-hoc calibration does indeed fall short, as do several other previous methods. However, some methods that marginalize over models give surprisingly strong results across a broad spectrum of tasks.
translated by 谷歌翻译
深度神经网络具有令人印象深刻的性能,但是他们无法可靠地估计其预测信心,从而限制了其在高风险领域中的适用性。我们表明,应用多标签的一VS损失揭示了分类的歧义并降低了模型的过度自信。引入的Slova(单标签One-Vs-All)模型重新定义了单个标签情况的典型单VS-ALL预测概率,其中只有一个类是正确的答案。仅当单个类具有很高的概率并且其他概率可忽略不计时,提议的分类器才有信心。与典型的SoftMax函数不同,如果所有其他类的概率都很小,Slova自然会检测到分布的样本。该模型还通过指数校准进行了微调,这使我们能够与模型精度准确地对齐置信分数。我们在三个任务上验证我们的方法。首先,我们证明了斯洛伐克与最先进的分布校准具有竞争力。其次,在数据集偏移下,斯洛伐克的性能很强。最后,我们的方法在检测到分布样品的检测方面表现出色。因此,斯洛伐克是一种工具,可以在需要不确定性建模的各种应用中使用。
translated by 谷歌翻译
生物关键是一种信号,可以从人体中连续测量,例如呼吸声,心脏活动(ECG),脑波(EEG)等,基于该信号,机器学习模型已经为自动疾病的非常有前途的性能开发检测和健康状态监测。但是,DataSet Shift,即,推理的数据分布因训练的分布而异,对于真实的基于生物信号的应用程序并不罕见。为了提高稳健性,具有不确定性资格的概率模型适于捕获预测的可靠性。然而,评估估计不确定性的质量仍然是一个挑战。在这项工作中,我们提出了一个框架来评估估计不确定性在捕获不同类型的生物数据集转换时估计的不确定性的能力。特别是,我们使用基于呼吸声和心电图信号的三个分类任务,以基准五个代表性的不确定性资格方法。广泛的实验表明,尽管集合和贝叶斯模型可以在数据集移位下提供相对更好的不确定性估计,但所有测试模型都无法满足可靠的预测和模型校准中的承诺。我们的工作为任何新开发的生物宣布分类器进行了全面评估,为全面评估铺平了道路。
translated by 谷歌翻译
不确定性量化对于机器人感知至关重要,因为过度自信或点估计人员可以导致环境和机器人侵犯和损害。在本文中,我们评估了单视图监督深度学习中的不确定量化的可扩展方法,特别是MC辍学和深度集成。特别是对于MC辍学,我们探讨了阵列在架构中不同级别的效果。我们表明,在编码器的所有层中添加丢失会带来比文献中的其他变化更好的结果。此配置类似地执行与Deep Ensembles具有更低的内存占用,这是相关的简单。最后,我们探讨了伪RGBD ICP的深度不确定性,并展示其估计具有实际规模的准确的双视图相对运动的可能性。
translated by 谷歌翻译
我们有兴趣估计深神经网络的不确定性,这些神经网络在许多科学和工程问题中起着重要作用。在本文中,我们提出了一个引人注目的新发现,即具有相同权重初始化的神经网络的合奏,在数据集中受到持续偏差的转移而训练会产生稍微不一致的训练模型,其中预测的差异是强大的指标。认知不确定性。使用神经切线核(NTK),我们证明了这种现象是由于NTK不变的部分而发生的。由于这是通过微不足道的输入转换来实现的,因此我们表明可以使用单个神经网络(使用我们称为$ \ delta- $ uq的技术)来近似它,从而通过边缘化效果来估计预测周围的不确定性偏见。我们表明,$ \ delta- $ uq的不确定性估计值优于各种基准测试的当前方法 - 异常拒绝,分配变化下的校准以及黑匣子功能的顺序设计优化。
translated by 谷歌翻译
Deep neural networks (NNs) are powerful black box predictors that have recently achieved impressive performance on a wide spectrum of tasks. Quantifying predictive uncertainty in NNs is a challenging and yet unsolved problem. Bayesian NNs, which learn a distribution over weights, are currently the state-of-the-art for estimating predictive uncertainty; however these require significant modifications to the training procedure and are computationally expensive compared to standard (non-Bayesian) NNs. We propose an alternative to Bayesian NNs that is simple to implement, readily parallelizable, requires very little hyperparameter tuning, and yields high quality predictive uncertainty estimates. Through a series of experiments on classification and regression benchmarks, we demonstrate that our method produces well-calibrated uncertainty estimates which are as good or better than approximate Bayesian NNs. To assess robustness to dataset shift, we evaluate the predictive uncertainty on test examples from known and unknown distributions, and show that our method is able to express higher uncertainty on out-of-distribution examples. We demonstrate the scalability of our method by evaluating predictive uncertainty estimates on ImageNet.
translated by 谷歌翻译
尽管在开发轨迹预测方法方面已经进行了许多工作,并且已经提出了各种数据集来基准这项任务,但迄今为止,关于这些方法在跨数据集的可推广性和可传递性的研究很少。在本文中,我们观察到了四个不同数据集(Argoverse,Nuscenes,互动,移位)的两种最新最新的轨迹预测方法的性能。该分析允许对最新轨迹预测模型的概括性礼节获得一些见解,并分析哪个数据集更代表真实的驾驶场景,因此可以更好地传递性能。此外,我们提出了一种新的方法来估计预测不确定性,并显示如何使用它来实现跨数据集的更好性能。
translated by 谷歌翻译
作为行业4.0时代的一项新兴技术,数字双胞胎因其承诺进一步优化流程设计,质量控制,健康监测,决策和政策制定等,通过全面对物理世界进行建模,以进一步优化流程设计,质量控制,健康监测,决策和政策,因此获得了前所未有的关注。互连的数字模型。在一系列两部分的论文中,我们研究了不同建模技术,孪生启用技术以及数字双胞胎常用的不确定性量化和优化方法的基本作用。第二篇论文介绍了数字双胞胎的关键启示技术的文献综述,重点是不确定性量化,优化方法,开源数据集和工具,主要发现,挑战和未来方向。讨论的重点是当前的不确定性量化和优化方法,以及如何在数字双胞胎的不同维度中应用它们。此外,本文介绍了一个案例研究,其中构建和测试了电池数字双胞胎,以说明在这两部分评论中回顾的一些建模和孪生方法。 GITHUB上可以找到用于生成案例研究中所有结果和数字的代码和预处理数据。
translated by 谷歌翻译
我们提出了一种用于预测性不确定性的框架,其神经网络取代了重量概率密度函数(PDF)的传统贝叶斯概念,其基于基于Gaussian再现内核Hilbert空间(RKHS)嵌入的模型权重的物理潜在场表示。这使我们能够使用量子物理学的扰动理论来制定模型权力关系关系的片刻分解问题。提取的时刻显示了模型输出的局部附近的重量PDF的连续正则化。这种局部时刻以极大的灵敏度确定重量PDF的局部异质性,从而提供比贝叶斯和集合方法特征的模型预测性不确定性的模型预测性的更大准确性。我们表明这导致更好地导致检测经历了经历了经过调节的测试数据的假模型预测,从而从模型中学到的培训PDF。我们在使用常见失真技术损坏的几个基准数据集中评估我们对基线不确定性定量方法的方法。我们的方法提供了快速模型预测性不确定性估计,具有更高的精度和校准。
translated by 谷歌翻译
We introduce ensembles of stochastic neural networks to approximate the Bayesian posterior, combining stochastic methods such as dropout with deep ensembles. The stochastic ensembles are formulated as families of distributions and trained to approximate the Bayesian posterior with variational inference. We implement stochastic ensembles based on Monte Carlo dropout, DropConnect and a novel non-parametric version of dropout and evaluate them on a toy problem and CIFAR image classification. For CIFAR, the stochastic ensembles are quantitatively compared to published Hamiltonian Monte Carlo results for a ResNet-20 architecture. We also test the quality of the posteriors directly against Hamiltonian Monte Carlo simulations in a simplified toy model. Our results show that in a number of settings, stochastic ensembles provide more accurate posterior estimates than regular deep ensembles.
translated by 谷歌翻译
最近出现了一系列用于估计具有单个正向通行证的深神经网络中的认知不确定性的新方法,最近已成为贝叶斯神经网络的有效替代方法。在信息性表示的前提下,这些确定性不确定性方法(DUM)在检测到分布(OOD)数据的同时在推理时添加可忽略的计算成本时实现了强大的性能。但是,目前尚不清楚dums是否经过校准,可以无缝地扩展到现实世界的应用 - 这都是其实际部署的先决条件。为此,我们首先提供了DUMS的分类法,并在连续分配转移下评估其校准。然后,我们将它们扩展到语义分割。我们发现,尽管DUMS尺度到现实的视觉任务并在OOD检测方面表现良好,但当前方法的实用性受到分配变化下的校准不良而破坏的。
translated by 谷歌翻译
可预测的不确定性可以通过两个性能 - 校准和清晰度来表征。本文争辩说明这些属性的不确定性,并提出了在深度学习中强制执行它们的简单算法。我们的方法专注于校准 - 分布校准的最强概念 - 并通过用神经估计器拟合低维密度或定量函数来实施它。由此产生的方法比以前的分类和回归方式更简单,更广泛适用。凭经验,我们发现我们的方法改善了几个任务的预测性不确定性,具有最小的计算和实现开销。我们的见解表明,培训深度学习模式的简单和改进方式,导致应准确的不确定性,应利用,以改善下游应用程序的性能。
translated by 谷歌翻译