Off-policy learning is more unstable compared to on-policy learning in reinforcement learning (RL). One reason for the instability of off-policy learning is a discrepancy between the target ($\pi$) and behavior (b) policy distributions. The discrepancy between $\pi$ and b distributions can be alleviated by employing a smooth variant of the importance sampling (IS), such as the relative importance sampling (RIS). RIS has parameter $\beta\in[0, 1]$ which controls smoothness. To cope with instability, we present the first relative importance sampling-off-policy actor-critic (RIS-Off-PAC) model-free algorithms in RL. In our method, the network yields a target policy (the actor), a value function (the critic) assessing the current policy ($\pi$) using samples drawn from behavior policy. We use action value generated from the behavior policy in reward function to train our algorithm rather than from the target policy. We also use deep neural networks to train both actor and critic. We evaluated our algorithm on a number of Open AI Gym benchmark problems and demonstrate better or comparable performance to several state-of-the-art RL baselines.
translated by 谷歌翻译
从现有数据中学习最佳行为是加强学习(RL)中最重要的问题之一。这被称为RL中的“非政策控制”,其中代理的目标是根据从给定策略(称为行为策略)获得的数据计算最佳策略。由于最佳策略可能与行为策略有很大不同,因此与“政体”设置相比,学习最佳行为非常困难,在学习中将利用来自策略更新的新数据。这项工作提出了一种非政策的天然参与者批评算法,该算法利用州行动分布校正来处理外部行为和样本效率的自然政策梯度。具有收敛保证的现有基于天然梯度的参与者批评算法需要固定功能,以近似策略和价值功能。这通常会导致许多RL应用中的次级学习。另一方面,我们提出的算法利用兼容功能,使人们能够使用任意神经网络近似策略和价值功能,并保证收敛到本地最佳策略。我们通过将其与基准RL任务上的香草梯度参与者 - 批评算法进行比较,说明了提出的非政策自然梯度算法的好处。
translated by 谷歌翻译
基于我们先前关于绿色仿真辅助政策梯度(GS-PG)的研究,重点是基于轨迹的重复使用,在本文中,我们考虑了无限 - 马尔可夫马尔可夫决策过程,并创建了一种新的重要性采样策略梯度优化的方法来支持动态决策制造。现有的GS-PG方法旨在从完整的剧集或过程轨迹中学习,这将其适用性限制在低数据状态和灵活的在线过程控制中。为了克服这一限制,提出的方法可以选择性地重复使用最相关的部分轨迹,即,重用单元基于每步或每次派遣的历史观察。具体而言,我们创建了基于混合的可能性比率(MLR)策略梯度优化,该优化可以利用不同行为政策下产生的历史状态行动转变中的信息。提出的减少差异经验重播(VRER)方法可以智能地选择和重复使用最相关的过渡观察,改善策略梯度估计并加速最佳政策的学习。我们的实证研究表明,它可以改善优化融合并增强最先进的政策优化方法的性能,例如Actor-Critic方法和近端政策优化。
translated by 谷歌翻译
政策梯度定理(Sutton等,2000)规定了目标政策下的累积折扣国家分配以近似梯度。实际上,基于该定理的大多数算法都打破了这一假设,引入了分布转移,该分配转移可能导致逆转溶液的收敛性。在本文中,我们提出了一种新的方法,可以从开始状态重建政策梯度,而无需采取特定的采样策略。可以根据梯度评论家来简化此形式的策略梯度计算,由于梯度的新钟声方程式,可以递归估算。通过使用来自差异数据流的梯度评论家的时间差异更新,我们开发了第一个以无模型方式避开分布变化问题的估计器。我们证明,在某些可实现的条件下,无论采样策略如何,我们的估计器都是公正的。我们从经验上表明,我们的技术在存在非政策样品的情况下实现了卓越的偏见变化权衡和性能。
translated by 谷歌翻译
与政策策略梯度技术相比,使用先前收集的数据的无模型的无模型深钢筋学习(RL)方法可以提高采样效率。但是,当利益政策的分布与收集数据的政策之间的差异时,非政策学习变得具有挑战性。尽管提出了良好的重要性抽样和范围的政策梯度技术来补偿这种差异,但它们通常需要一系列长轨迹,以增加计算复杂性并引起其他问题,例如消失或爆炸梯度。此外,由于需要行动概率,它们对连续动作领域的概括严格受到限制,这不适合确定性政策。为了克服这些局限性,我们引入了一种替代的非上政策校正算法,用于连续作用空间,参与者 - 批判性非政策校正(AC-OFF-POC),以减轻先前收集的数据引入的潜在缺陷。通过由代理商对随机采样批次过渡的状态的最新动作决策计算出的新颖差异度量,该方法不需要任何策略的实际或估计的行动概率,并提供足够的一步重要性抽样。理论结果表明,引入的方法可以使用固定的独特点获得收缩映射,从而可以进行“安全”的非政策学习。我们的经验结果表明,AC-Off-POC始终通过有效地安排学习率和Q学习和政策优化的学习率,以比竞争方法更少的步骤改善最新的回报。
translated by 谷歌翻译
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an offpolicy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
近年来近年来,加固学习方法已经发展了一系列政策梯度方法,主要用于建模随机政策的高斯分布。然而,高斯分布具有无限的支持,而现实世界应用通常具有有限的动作空间。如果它提供有限支持,则该解剖会导致可以消除的估计偏差,因为它提出了有限的支持。在这项工作中,我们调查如何在Openai健身房的两个连续控制任务中训练该测试策略在训练时执行该测试策略。对于这两个任务来说,测试政策在代理人的最终预期奖励方面优于高斯政策,也显示出更多的稳定性和更快的培训过程融合。对于具有高维图像输入的卡路里环境,在高斯政策中,代理的成功率提高了63%。
translated by 谷歌翻译
尽管政策梯度方法的普及日益越来越大,但它们尚未广泛用于样品稀缺应用,例如机器人。通过充分利用可用信息,可以提高样本效率。作为强化学习中的关键部件,奖励功能通常仔细设计以引导代理商。因此,奖励功能通常是已知的,允许访问不仅可以访问标量奖励信号,而且允许奖励梯度。为了从奖励梯度中受益,之前的作品需要了解环境动态,这很难获得。在这项工作中,我们开发\ Textit {奖励政策梯度}估计器,这是一种新的方法,可以在不学习模型的情况下整合奖励梯度。绕过模型动态允许我们的估算器实现更好的偏差差异,这导致更高的样本效率,如经验分析所示。我们的方法还提高了在不同的Mujoco控制任务上的近端策略优化的性能。
translated by 谷歌翻译
In this paper we consider deterministic policy gradient algorithms for reinforcement learning with continuous actions. The deterministic policy gradient has a particularly appealing form: it is the expected gradient of the action-value function. This simple form means that the deterministic policy gradient can be estimated much more efficiently than the usual stochastic policy gradient. To ensure adequate exploration, we introduce an off-policy actor-critic algorithm that learns a deterministic target policy from an exploratory behaviour policy. We demonstrate that deterministic policy gradient algorithms can significantly outperform their stochastic counterparts in high-dimensional action spaces.
translated by 谷歌翻译
Policy gradient methods are an appealing approach in reinforcement learning because they directly optimize the cumulative reward and can straightforwardly be used with nonlinear function approximators such as neural networks. The two main challenges are the large number of samples typically required, and the difficulty of obtaining stable and steady improvement despite the nonstationarity of the incoming data. We address the first challenge by using value functions to substantially reduce the variance of policy gradient estimates at the cost of some bias, with an exponentially-weighted estimator of the advantage function that is analogous to TD(λ). We address the second challenge by using trust region optimization procedure for both the policy and the value function, which are represented by neural networks. Our approach yields strong empirical results on highly challenging 3D locomotion tasks, learning running gaits for bipedal and quadrupedal simulated robots, and learning a policy for getting the biped to stand up from starting out lying on the ground. In contrast to a body of prior work that uses hand-crafted policy representations, our neural network policies map directly from raw kinematics to joint torques. Our algorithm is fully model-free, and the amount of simulated experience required for the learning tasks on 3D bipeds corresponds to 1-2 weeks of real time.
translated by 谷歌翻译
In value-based reinforcement learning methods such as deep Q-learning, function approximation errors are known to lead to overestimated value estimates and suboptimal policies. We show that this problem persists in an actor-critic setting and propose novel mechanisms to minimize its effects on both the actor and the critic. Our algorithm builds on Double Q-learning, by taking the minimum value between a pair of critics to limit overestimation. We draw the connection between target networks and overestimation bias, and suggest delaying policy updates to reduce per-update error and further improve performance. We evaluate our method on the suite of OpenAI gym tasks, outperforming the state of the art in every environment tested.
translated by 谷歌翻译
由于策略梯度定理导致的策略设置存在各种理论上 - 声音策略梯度算法,其为梯度提供了简化的形式。然而,由于存在多重目标和缺乏明确的脱助政策政策梯度定理,截止策略设置不太明确。在这项工作中,我们将这些目标统一到一个违规目标,并为此统一目标提供了政策梯度定理。推导涉及强调的权重和利息职能。我们显示多种策略来近似梯度,以识别权重(ACE)称为Actor评论家的算法。我们证明了以前(半梯度)脱离政策演员 - 评论家 - 特别是offpac和DPG - 收敛到错误的解决方案,而Ace找到最佳解决方案。我们还强调为什么这些半梯度方法仍然可以在实践中表现良好,表明ace中的方差策略。我们经验研究了两个经典控制环境的若干ACE变体和基于图像的环境,旨在说明每个梯度近似的权衡。我们发现,通过直接逼近强调权重,ACE在所有测试的所有设置中执行或优于offpac。
translated by 谷歌翻译
为了在许多因素动态影响输出轨迹的复杂随机系统上学习,希望有效利用从以前迭代中收集的历史样本中的信息来加速策略优化。经典的经验重播使代理商可以通过重复使用历史观察来记住。但是,处理所有观察结果的统一重复使用策略均忽略了不同样本的相对重要性。为了克服这一限制,我们提出了一个基于一般差异的经验重播(VRER)框架,该框架可以选择性地重复使用最相关的样本以改善策略梯度估计。这种选择性机制可以自适应地对过去的样品增加重量,这些样本更可能由当前目标分布产生。我们的理论和实证研究表明,提议的VRER可以加速学习最佳政策,并增强最先进的政策优化方法的性能。
translated by 谷歌翻译
为了在许多因素动态影响输出轨迹的复杂随机系统上学习,希望有效利用从以前迭代中收集的历史样本中的信息来加速策略优化。经典的经验重播使代理商可以通过重复使用历史观察来记住。但是,处理所有观察结果的统一重复使用策略均忽略了不同样本的相对重要性。为了克服这一限制,我们提出了一个基于一般差异的经验重播(VRER)框架,该框架可以选择性地重复使用最相关的样本以改善策略梯度估计。这种选择性机制可以自适应地对过去的样品增加重量,这些样本更可能由当前目标分布产生。我们的理论和实证研究表明,提议的VRER可以加速学习最佳政策,并增强最先进的政策优化方法的性能。
translated by 谷歌翻译
We propose a conceptually simple and lightweight framework for deep reinforcement learning that uses asynchronous gradient descent for optimization of deep neural network controllers. We present asynchronous variants of four standard reinforcement learning algorithms and show that parallel actor-learners have a stabilizing effect on training allowing all four methods to successfully train neural network controllers. The best performing method, an asynchronous variant of actor-critic, surpasses the current state-of-the-art on the Atari domain while training for half the time on a single multi-core CPU instead of a GPU. Furthermore, we show that asynchronous actor-critic succeeds on a wide variety of continuous motor control problems as well as on a new task of navigating random 3D mazes using a visual input.
translated by 谷歌翻译
软演员 - 评论家(SAC)是最先进的偏离策略强化学习(RL)算法之一,其在基于最大熵的RL框架内。 SAC被证明在具有良好稳定性和稳健性的持续控制任务的列表中表现得非常好。 SAC了解一个随机高斯政策,可以最大限度地提高预期奖励和政策熵之间的权衡。要更新策略,SAC可最大限度地减少当前策略密度与软值函数密度之间的kl分歧。然后用于获得这种分歧的近似梯度的回报。在本文中,我们提出了跨熵策略优化(SAC-CEPO)的软演员 - 评论家,它使用跨熵方法(CEM)来优化SAC的政策网络。初始思想是使用CEM来迭代地对软价函数密度的最接近的分布进行采样,并使用结果分布作为更新策略网络的目标。为了降低计算复杂性,我们还介绍了一个解耦的策略结构,该策略结构将高斯策略解耦为一个策略,了解了学习均值的均值和另一个策略,以便只有CEM训练平均政策。我们表明,这种解耦的政策结构确实会聚到最佳,我们还通过实验证明SAC-CEPO实现对原始囊的竞争性能。
translated by 谷歌翻译
While risk-neutral reinforcement learning has shown experimental success in a number of applications, it is well-known to be non-robust with respect to noise and perturbations in the parameters of the system. For this reason, risk-sensitive reinforcement learning algorithms have been studied to introduce robustness and sample efficiency, and lead to better real-life performance. In this work, we introduce new model-free risk-sensitive reinforcement learning algorithms as variations of widely-used Policy Gradient algorithms with similar implementation properties. In particular, we study the effect of exponential criteria on the risk-sensitivity of the policy of a reinforcement learning agent, and develop variants of the Monte Carlo Policy Gradient algorithm and the online (temporal-difference) Actor-Critic algorithm. Analytical results showcase that the use of exponential criteria generalize commonly used ad-hoc regularization approaches. The implementation, performance, and robustness properties of the proposed methods are evaluated in simulated experiments.
translated by 谷歌翻译
一种被称为优先体验重播(PER)的广泛研究的深钢筋学习(RL)技术使代理可以从与其时间差异(TD)误差成正比的过渡中学习。尽管已经表明,PER是离散作用域中深度RL方法总体性能的最关键组成部分之一,但许多经验研究表明,在连续控制中,它的表现非常低于参与者 - 批评算法。从理论上讲,我们表明,无法有效地通过具有较大TD错误的过渡对演员网络进行训练。结果,在Q网络下计算的近似策略梯度与在最佳Q功能下计算的实际梯度不同。在此激励的基础上,我们引入了一种新颖的经验重播抽样框架,用于演员批评方法,该框架还认为稳定性和最新发现的问题是Per的经验表现不佳。引入的算法提出了对演员和评论家网络的有效和高效培训的改进的新分支。一系列广泛的实验验证了我们的理论主张,并证明了引入的方法显着优于竞争方法,并获得了与标准的非政策参与者 - 批评算法相比,获得最先进的结果。
translated by 谷歌翻译
准确的价值估计对于禁止禁止增强学习是重要的。基于时间差学学习的算法通常容易容易出现过度或低估的偏差。在本文中,我们提出了一种称为自适应校准批评者(ACC)的一般方法,该方法使用最近的高方差,但不偏见的on-Police Rollouts来缓解低方差时间差目标的偏差。我们将ACC应用于截断的分位数批评,这是一种连续控制的算法,允许使用每个环境调谐的超参数调节偏差。生成的算法在训练渲染渲染超参数期间自适应调整参数不必要,并在Openai健身房连续控制基准测试中设置一个新的算法中,这些算法在所有环境中没有调整HyperParameters的所有算法中。此外,我们证明ACC通过进一步将其进一步应用于TD3并在此设置中显示出改进的性能而相当一般。
translated by 谷歌翻译