本研究旨在解决二次多尺寸机器人到执行器故障的容错问题,这对于在远程或极端环境中运行的机器人至关重要。特别地,建立了具有动态随机化(ACDR)的自适应课程增强学习算法。ACDR算法可以在随机执行器故障条件下自适应地培训四足机器人,并制定一个用于容错机器人控制的单一强大策略。值得注意的是,难以使静止的课程比易于2个课程更有效地用于四足机器人机器人。ACDR算法可用于构建机器人系统,该机器人不需要其他模块检测执行器故障和切换策略。实验结果表明,ACDR算法在平均奖励和步行距离方面优于传统算法。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
自我模型是一种过程,例如动物或机器等代理商学会创建自己动态的预测模型。一旦被捕获,这种自模型就可以允许代理使用自我模型在内部计划和评估各种潜在行为,而不是使用昂贵的物理实验。在这里,我们量化了这种自模型对机器人的复杂性的好处。我们发现与直接学习基线相比,机器人拥有的自由度数量与自模型的附加值之间的R2 = 0.90相关性。这一结果可能有助于激发日益复杂的机器人系统中的自我建模,并阐明动物和人类自我模型的起源,并最终自我意识。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
由于涉及的复杂动态和多标准优化,控制非静态双模型机器人具有挑战性。最近的作品已经证明了深度加强学习(DRL)的仿真和物理机器人的有效性。在这些方法中,通常总共总共汇总来自不同标准的奖励以学习单个值函数。但是,这可能导致混合奖励之间的依赖信息丢失并导致次优策略。在这项工作中,我们提出了一种新颖的奖励自适应加强学习,用于Biped运动,允许控制策略通过使用动态机制通过多标准同时优化。该方法应用多重批评,为每个奖励组件学习单独的值函数。这导致混合政策梯度。我们进一步提出了动态权重,允许每个组件以不同的优先级优化策略。这种混合动态和动态策略梯度(HDPG)设计使代理商更有效地学习。我们表明所提出的方法优于总结奖励方法,能够转移到物理机器人。 SIM-to-Real和Mujoco结果进一步证明了HDPG的有效性和泛化。
translated by 谷歌翻译
Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
translated by 谷歌翻译
在这项工作中,我们介绍并研究了一种培训设置,该培训设置通过在单个工作站GPU上使用大量并行性来实现现实世界机器人任务的快速政策。我们分析和讨论不同培训算法组件在大规模平行制度中对最终政策绩效和培训时间的影响。此外,我们还提供了一种新颖的游戏启发课程,非常适合与数千个模拟机器人并行培训。我们通过训练四足机器人Anymal在具有挑战性的地形上行走来评估该方法。平行方法允许在不到四分钟的时间内对平坦地形进行培训政策,而在二十分钟内,地形不平衡。与以前的工作相比,这代表了多个数量级的加速。最后,我们将政策转移到真实的机器人中以验证该方法。我们开放培训代码,以帮助加速学习的腿部运动领域的进一步研究。
translated by 谷歌翻译
培训强大的政策对于现实世界中的政策部署至关重要,或者处理不同动态系统中未知动态不匹配。域随机化〜(DR)是一种简单而优雅的方法,可以训练保守的政策,以反对不同的动态系统,而无需有关目标系统参数的专家知识。但是,现有的作品表明,通过DR培训的政策往往保守过度保守,并且在目标领域的表现差。我们的关键见解是,具有不同参数的动态系统为策略提供了不同级别的难度,并且由于策略的发展,在系统中表现良好的难度正在不断变化。如果我们可以为该政策进行适当的困难来积极地对系统进行采样,它将稳定培训过程,并防止政策变得过于保守或过度优势。为了实现这一想法,我们引入了主动动力学偏好(ADP),从而量化了采样系统参数的信息性和密度。 ADP积极选择具有高信息性和低密度的系统参数。我们在四个机器人运动任务中验证我们的方法,并在训练环境和测试环境之间存在各种差异。广泛的结果表明,与几个基线相比,我们的方法对系统不一致具有较高的鲁棒性。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
当前,随机化是用于机器人技术中数据驱动的学习算法的SIM2REAL传输中广泛使用的方法。尽管如此,大多数SIM2REAL研究报告了特定随机技术的结果,并且通常是在高度定制的机器人系统上,因此很难系统地评估不同的随机方法。为了解决这个问题,我们为机器人触及余量操纵器任务定义了易于制作的实验设置,该设置可以作为比较的基准。我们将四个随机策略与模拟和真实机器人中的三个随机参数进行比较。我们的结果表明,更多的随机化有助于SIM2REAL转移,但它也可能损害算法在模拟中找到良好策略的能力。完全随机的仿真和微调显示出差异化的结果,并且比测试的其他方法更好地转化为实际机器人。
translated by 谷歌翻译
机器人学习中流行的范式是为每个新机器人从头开始训练一项政策。这不仅效率低下,而且对于复杂的机器人而言通常不切实际。在这项工作中,我们考虑了将政策转移到具有显着不同参数(例如运动学和形态)的两个不同机器人中的问题。通过匹配动作或状态过渡分布(包括模仿学习方法)来训练新政策的现有方法,由于最佳动作和/或状态分布在不同的机器人中不匹配而失败。在本文中,我们提出了一种名为$ Revolver $的新方法,该方法使用连续进化模型用于物理模拟器中实现的机器人政策转移。我们通过找到机器人参数的连续进化变化,在源机器人和目标机器人之间进行了插值。源机器人的专家政策是通过逐渐发展为目标机器人的一系列中间机器人的训练来转移的。物理模拟器上的实验表明,所提出的连续进化模型可以有效地跨机器人转移策略,并在新机器人上实现卓越的样品效率。在稀疏的奖励环境中,提出的方法尤其有利,在稀疏奖励环境中,探索可以大大减少。代码在https://github.com/xingyul/revolver上发布。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
从任意堕落状态中起床是一种基本的人类技能。现有的学习这种技能的方法通常会产生高度动态和不稳定的起床动作,这不像人类的起床策略,或者基于跟踪记录的人类起床运动。在本文中,我们提出了一种使用强化学习的分阶段方法,而无需求助于运动捕获数据。该方法首先利用了强大的字符模型,从而有助于发现解决方案模式。然后,第二阶段学会了调整控制策略,以逐步与角色的较弱版本一起使用。最后,第三阶段学习控制政策,这些政策可以以较慢的速度重现较弱的起床动作。我们表明,在多个运行中,该方法可以发现各种各样的起床策略,并以各种速度执行它们。结果通常会产生采用最终站立策略的策略,这些策略是从所有初始状态中看到的恢复动作所共有的。但是,我们还发现了对俯卧和仰卧初始堕落状态的不同策略的政策。学识渊博的起床控制策略通常具有明显的静态稳定性,即,在起床运动过程中,它们可以在各个点停下来。我们进一步测试了新的限制场景的方法,例如在演员表中有一条腿和手臂。
translated by 谷歌翻译
通过腿部机器人在具有挑战性的环境上进行本地导航的通用方法需要路径计划,路径跟随和运动,这通常需要机动控制策略,以准确跟踪指挥速度。但是,通过将导航问题分解为这些子任务,我们限制了机器人的功能,因为各个任务不考虑完整的解决方案空间。在这项工作中,我们建议通过深入强化学习来训练端到端政策来解决完整的问题。机器人不必在提供的时间内到达目标位置,而不是不断跟踪预算的路径。该任务的成功仅在情节结束时进行评估,这意味着该策略不需要尽快到达目标。可以免费选择其路径和运动步态。以这种方式培训政策可以打开更多可能的解决方案,这使机器人能够学习更多复杂的行为。我们比较我们的速度跟踪方法,并表明任务奖励的时间依赖性对于成功学习这些新行为至关重要。最后,我们证明了在真正的四足动物机器人上成功部署政策。机器人能够跨越具有挑战性的地形,这是以前无法实现的,同时使用更节能的步态并达到更高的成功率。
translated by 谷歌翻译
教机器人通过加强学习(RL)在复杂的三维环境环境下学习多样化的运动技能仍然具有挑战性。已经表明,在将其转移到复杂设置之前,在简单设置中的培训代理可以改善培训过程,但到目前为止,仅在相对简单的运动技能的背景下。在这项工作中,我们适应了增强的配对开放式开拓者(EPOET)方法,以训练更复杂的代理,以在复杂的三维地形上有效行走。首先,为了产生更加坚固且多样化的三维训练地形,并增加了复杂性,我们扩展了组成模式产生的网络 - 增强拓扑的神经进化(CPPN-NEAT)方法,并包括随机形状。其次,我们将Epoet与软性演员 - 批评外的优化相结合,产生Epoet-SAC,以确保代理商可以学习更多多样化的技能,以解决更具挑战性的任务。我们的实验结果表明,新生成的三维地形具有足够的多样性和复杂性来指导学习,Epoet成功地学习了这些地形上的复杂运动技能,并且我们提出的EPOET-SAC方法在Epoet上略有改进。
translated by 谷歌翻译
在这项工作中,我们为软机器人蛇提供了一种基于学习的目标跟踪控制方法。受到生物蛇的启发,我们的控制器由两个关键模块组成:用于学习靶向轨迹行为的增强学习(RL)模块,给出了软蛇机器人的随机动力学,以及带有Matsuoka振荡器的中央模式生成器(CPG)系统,用于产生稳定而多样的运动模式。基于提议的框架,我们全面讨论了软蛇机器人的可操作性,包括在其蛇形运动期间的转向和速度控制。可以将这种可操作性映射到CPG系统振荡模式的控制中。通过对Matsuoka CPG系统振荡性能的理论分析,这项工作表明,实现我们软蛇机器人的自由移动性的关键是正确限制和控制Matsuoka CpG系统的某些系数比率。基于此分析,我们系统地制定了CPG系统的可控系数,供RL代理运行。通过实验验证,我们表明,在模拟环境中学习的控制政策可以直接应用于控制我们的真正的蛇机器人以执行目标跟踪任务,而不管模拟与现实世界之间的物理环境差距如何。实验结果还表明,与我们先前的方法和基线RL方法(PPO)相比,我们的方法对SIM到现实过渡的适应性和鲁棒性得到了显着改善。
translated by 谷歌翻译
为了使腿部机器人与人类和动物的运动能力相匹配,它们不仅必须产生强大的周期性步行和跑步,而且还必须在名义运动步态和更专业的瞬态操纵之间无缝切换。尽管最近在两足机器人的控制方面取得了进步,但几乎没有集中精力产生高度动态的行为。利用强化学习制定控制腿机器人的政策的最新工作表明,在产生强大的步行行为方面取得了成功。但是,这些学识渊博的政策难以在单个网络上表达多种不同行为。受腿部机器人的常规优化控制技术的启发,这项工作应用了一个经常性的策略来执行四步,90度转弯,使用从优化的单个刚体模型轨迹生成的参考数据进行了训练。我们提出了一个新型的培训框架,该培训框架使用结尾终端奖励从预先计算的轨迹数据中学习特定行为,并证明了双皮亚机器人Cassie上的硬件成功转移。
translated by 谷歌翻译
Robots are traditionally bounded by a fixed embodiment during their operational lifetime, which limits their ability to adapt to their surroundings. Co-optimizing control and morphology of a robot, however, is often inefficient due to the complex interplay between the controller and morphology. In this paper, we propose a learning-based control method that can inherently take morphology into consideration such that once the control policy is trained in the simulator, it can be easily deployed to robots with different embodiments in the real world. In particular, we present the Embodiment-aware Transformer (EAT), an architecture that casts this control problem as conditional sequence modeling. EAT outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired robot embodiment, past states, and actions, our EAT model can generate future actions that best fit the current robot embodiment. Experimental results show that EAT can outperform all other alternatives in embodiment-varying tasks, and succeed in an example of real-world evolution tasks: stepping down a stair through updating the morphology alone. We hope that EAT will inspire a new push toward real-world evolution across many domains, where algorithms like EAT can blaze a trail by bridging the field of evolutionary robotics and big data sequence modeling.
translated by 谷歌翻译
Real-world autonomous missions often require rich interaction with nearby objects, such as doors or switches, along with effective navigation. However, such complex behaviors are difficult to learn because they involve both high-level planning and low-level motor control. We present a novel framework, Cascaded Compositional Residual Learning (CCRL), which learns composite skills by recursively leveraging a library of previously learned control policies. Our framework learns multiplicative policy composition, task-specific residual actions, and synthetic goal information simultaneously while freezing the prerequisite policies. We further explicitly control the style of the motion by regularizing residual actions. We show that our framework learns joint-level control policies for a diverse set of motor skills ranging from basic locomotion to complex interactive navigation, including navigating around obstacles, pushing objects, crawling under a table, pushing a door open with its leg, and holding it open while walking through it. The proposed CCRL framework leads to policies with consistent styles and lower joint torques, which we successfully transfer to a real Unitree A1 robot without any additional fine-tuning.
translated by 谷歌翻译
深度强化学习是在不需要领域知识的不受控制环境中学习政策的有前途的方法。不幸的是,由于样本效率低下,深度RL应用主要集中在模拟环境上。在这项工作中,我们证明了机器学习算法和库的最新进步与精心调整的机器人控制器相结合,导致在现实世界中仅20分钟内学习四倍的运动。我们在几个室内和室外地形上评估了我们的方法,这些室内和室外地形对基于古典模型的控制器来说是具有挑战性的。我们观察机器人能够在所有这些地形上始终如一地学习步态。最后,我们在模拟环境中评估我们的设计决策。
translated by 谷歌翻译