从任意堕落状态中起床是一种基本的人类技能。现有的学习这种技能的方法通常会产生高度动态和不稳定的起床动作,这不像人类的起床策略,或者基于跟踪记录的人类起床运动。在本文中,我们提出了一种使用强化学习的分阶段方法,而无需求助于运动捕获数据。该方法首先利用了强大的字符模型,从而有助于发现解决方案模式。然后,第二阶段学会了调整控制策略,以逐步与角色的较弱版本一起使用。最后,第三阶段学习控制政策,这些政策可以以较慢的速度重现较弱的起床动作。我们表明,在多个运行中,该方法可以发现各种各样的起床策略,并以各种速度执行它们。结果通常会产生采用最终站立策略的策略,这些策略是从所有初始状态中看到的恢复动作所共有的。但是,我们还发现了对俯卧和仰卧初始堕落状态的不同策略的政策。学识渊博的起床控制策略通常具有明显的静态稳定性,即,在起床运动过程中,它们可以在各个点停下来。我们进一步测试了新的限制场景的方法,例如在演员表中有一条腿和手臂。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
我们为物理模拟字符进行了简单而直观的互动控制方法。我们的工作在生成的对抗网络(GAN)和加强学习时构建,并介绍了一个模仿学习框架,其中分类器的集合和仿制策略训练在给定预处理的参考剪辑中训练。分类器受过培训,以区分从模仿政策产生的运动中的参考运动,而策略是为了欺骗歧视者而获得奖励。使用我们的GaN的方法,可以单独培训多个电机控制策略以模仿不同的行为。在运行时,我们的系统可以响应用户提供的外部控制信号,并在不同策略之间交互式切换。与现有方法相比,我们所提出的方法具有以下有吸引力的特性:1)在不手动设计和微调奖励功能的情况下实现最先进的模仿性能; 2)直接控制字符,而无需明确地或隐含地通过相位状态跟踪任何目标参考姿势; 3)支持交互式策略切换,而无需任何运动生成或运动匹配机制。我们突出了我们在一系列模仿和互动控制任务中的方法的适用性,同时还证明了其抵御外部扰动以及恢复平衡的能力。总的来说,我们的方法产生高保真运动,运行时的运行时间低,并且可以轻松地集成到交互式应用程序和游戏中。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
学习灵巧的操纵技巧是计算机图形和机器人技术的长期挑战,尤其是当任务涉及手,工具和物体之间的复杂而微妙的互动时。在本文中,我们专注于基于筷子的对象搬迁任务,这些任务很常见却又要求。成功的筷子技巧的关键是稳定地抓住棍棒,这也支持精致的演习。我们会自动发现贝叶斯优化(BO)和深钢筋学习(DRL)的身体有效的筷子姿势,它适用于多种握把的样式和手工形态,而无需示例数据。作为输入,我们要移动发现的抓紧姿势和所需的对象,我们构建了基于物理的手部控制器,以在两个阶段完成重定位任务。首先,运动轨迹是为筷子合成的,并处于运动计划阶段。我们运动策划者的关键组件包括一个握把模型,以选择用于抓住对象的合适筷子配置,以及一个轨迹优化模块,以生成无碰撞的筷子轨迹。然后,我们再次通过DRL训练基于物理的手部控制器,以跟踪运动计划者产生的所需运动轨迹。我们通过重新定位各种形状和尺寸的对象,以多种诱人的样式和多种手工形态的位置来展示框架的功能。与试图学习基于筷子的技能的香草系统相比,我们的系统实现了更快的学习速度和更好的控制鲁棒性,而无需抓紧姿势优化模块和/或没有运动学运动计划者。
translated by 谷歌翻译
Reinforcement Learning (RL) has seen many recent successes for quadruped robot control. The imitation of reference motions provides a simple and powerful prior for guiding solutions towards desired solutions without the need for meticulous reward design. While much work uses motion capture data or hand-crafted trajectories as the reference motion, relatively little work has explored the use of reference motions coming from model-based trajectory optimization. In this work, we investigate several design considerations that arise with such a framework, as demonstrated through four dynamic behaviours: trot, front hop, 180 backflip, and biped stepping. These are trained in simulation and transferred to a physical Solo 8 quadruped robot without further adaptation. In particular, we explore the space of feed-forward designs afforded by the trajectory optimizer to understand its impact on RL learning efficiency and sim-to-real transfer. These findings contribute to the long standing goal of producing robot controllers that combine the interpretability and precision of model-based optimization with the robustness that model-free RL-based controllers offer.
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
自动设计虚拟人和类人动物在帮助游戏,电影和机器人中的角色创作过程中具有巨大的潜力。在某些情况下,角色创建者可能希望设计针对某些动作(例如空手道踢和跑酷跳跃)定制的类人体身体。在这项工作中,我们提出了一个人形设计框架,以自动生成以预先指定的人体运动为条件的身体有效的人形体。首先,我们学习了一个广义的类人动物控制器,该控制器在大型人体运动数据集上进行了训练,该数据集具有多样化的人体运动和身体形状。其次,我们使用设计与控制框架来优化类人动物的物理属性,以找到可以更好地模仿预先指定的人类运动序列的身体设计。我们的方法利用预先训练的类人动物控制器和物理模拟作为指导,能够发现经过定制以执行预先指定的人类运动的新类型类人体设计。
translated by 谷歌翻译
现在,最先进的强化学习能够在模拟中学习双皮亚机器人的多功能运动,平衡和推送能力。然而,现实差距大多被忽略了,模拟结果几乎不会转移到真实硬件上。在实践中,它是不成功的,因为物理学过度简化,硬件限制被忽略,或者不能保证规律性,并且可能会发生意外的危险运动。本文提出了一个强化学习框架,该框架能够学习以平稳的开箱即用向现实的转移,仅需要瞬时的本体感受观察,可以学习强大的站立式恢复。通过结合原始的终止条件和政策平滑度调节,我们使用没有记忆力或观察历史的政策实现了稳定的学习,SIM转移和安全性。然后使用奖励成型来提供有关如何保持平衡的见解。我们展示了其在下LIMB医学外骨骼Atalante中的现实表现。
translated by 谷歌翻译
我们专注于开发Quadrupedal机器人节能控制器的问题。动物可以以不同的速度积极切换Gaits以降低其能量消耗。在本文中,我们设计了一个分层学习框架,其中独特的运动遗传仪和自然步态过渡自动出现,其能量最小化的简单奖励。我们使用进化策略来培训一个高级步态政策,指定每只脚的步态图案,而低级凸MPC控制器优化电机命令,以便机器人可以使用该步态图案以所需的速度行走。我们在四足机器人上测试我们的学习框架,并展示了自动步态过渡,从步行到小跑和飞行,因为机器人增加了速度。我们表明学习的等级控制器在广泛的运动速度范围内消耗的能量要少于基线控制器。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
人体运动的实时跟踪对于AR/VR中的互动和沉浸式体验至关重要。但是,有关人体的传感器数据非常有限,可以从独立的可穿戴设备(例如HMD(头部安装设备)或AR眼镜)获得。在这项工作中,我们提出了一个强化学习框架,该框架从HMD和两个控制器中获取稀疏信号,并模拟合理且身体上有效的全身运动。在训练过程中,使用高质量的全身运动作为密集的监督,一个简单的策略网络可以学会为角色,步行和慢跑的角色输出适当的扭矩,同时紧随输入信号。我们的结果表明,即使输入仅是HMD的6D变换,也没有对下半身进行任何观察到的地面真理的惊人相似的腿部运动。我们还表明,单一政策可以对各种运动风格,不同的身体尺寸和新颖的环境都有坚固的态度。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
通过腿部机器人在具有挑战性的环境上进行本地导航的通用方法需要路径计划,路径跟随和运动,这通常需要机动控制策略,以准确跟踪指挥速度。但是,通过将导航问题分解为这些子任务,我们限制了机器人的功能,因为各个任务不考虑完整的解决方案空间。在这项工作中,我们建议通过深入强化学习来训练端到端政策来解决完整的问题。机器人不必在提供的时间内到达目标位置,而不是不断跟踪预算的路径。该任务的成功仅在情节结束时进行评估,这意味着该策略不需要尽快到达目标。可以免费选择其路径和运动步态。以这种方式培训政策可以打开更多可能的解决方案,这使机器人能够学习更多复杂的行为。我们比较我们的速度跟踪方法,并表明任务奖励的时间依赖性对于成功学习这些新行为至关重要。最后,我们证明了在真正的四足动物机器人上成功部署政策。机器人能够跨越具有挑战性的地形,这是以前无法实现的,同时使用更节能的步态并达到更高的成功率。
translated by 谷歌翻译
Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
translated by 谷歌翻译
将四型人降落在倾斜的表面上是一个具有挑战性的动作。任何倾斜着陆轨迹的最终状态都不是平衡,这排除了大多数常规控制方法的使用。我们提出了一种深入的强化学习方法,以设计倾斜表面的自动着陆控制器。使用具有稀疏奖励和量身定制的课程学习方法的近端政策优化(PPO)算法,可以在不到90分钟的标准笔记本电脑上培训倾斜的着陆政策。然后,该政策直接采用真正的Crazyflie 2.1四型四面管,并成功地在飞行舞台上执行了真正的倾向着陆。单个策略评估大约需要2.5 \,MS,这使其适用于四型在四面体上的未来嵌入式实现。
translated by 谷歌翻译
由于其物理能力,模拟的类人动物是一个吸引人的研究领域。尽管如此,他们也在控制方面具有挑战性,因为政策必须推动不稳定,不连续和高维物理系统。一种经过广泛研究的方法是利用运动捕获(MOCAP)数据来教授类人动物的低水平技能(例如,站立,步行和跑步),然后可以重新使用以综合高级行为。但是,即使使用MOCAP数据,控制模拟的类人动物仍然非常困难,因为MOCAP数据仅提供运动学信息。寻找物理控制输入以实现所示动作需要计算密集型方法,例如增强学习。因此,尽管有公开可用的MOCAP数据,但其效用仍限于具有大规模计算的机构。在这项工作中,我们通过训练和释放高质量的代理,可以大大降低有关该主题的生产研究的障碍,这些代理可以在基于DM_Control物理学的环境中跟踪三个小时的MOCAP数据以上的MOCAP数据。我们释放Mocapact(动作动作捕获),这些专家代理的数据集及其推出,其中包含本体感受观察和动作。我们通过使用它来训练单个层次结构策略来证明MOCAPACT的实用性,该策略能够跟踪DM_Control中的整个MOCAP数据集并显示学习学到的低级组件可以被重新使用以有效地学习下游高级任务。最后,我们使用MoCapact训练自动回旋GPT模型,并表明它可以控制模拟的类人动物以在运动提示下执行自然运动完成。结果和指向代码和数据集的链接的视频可在https://microsoft.github.io/mocapact上获得。
translated by 谷歌翻译
在这项工作中,我们提出了一种方法,用于生成降低的模型参考轨迹,用于用于双皮亚机器人的高度动态操作的一般类别,用于SIM卡之间,用于SIM卡至现实的增强学习。我们的方法是利用单个刚体模型(SRBM)来优化轨迹的库库,以用作学习政策的奖励函数中的专家参考。该方法将模型的动态旋转和翻译行为转化为全阶机器人模型,并成功将其传输到真实硬件。 SRBM的简单性允许快速迭代和行为改进,而基于学习的控制器的鲁棒性则可以将高度动态的动作传输到硬件。 %在这项工作中,我们介绍了一套可转移性约束,将SRBM动态修改为实际的两足机器人硬件,这是我们为动态步进,转动操作和跳跃创建最佳轨迹的框架。在这项工作中,我们介绍了一套可转移性约束,将SRBM动力学修改为实际的双皮亚机器人硬件,我们为各种高度动态的操作创建最佳轨迹的框架,以及我们整合参考轨迹的高速强化跑步轨迹的方法学习政策。我们验证了在两足机器人Cassie上的方法,我们成功地展示了高达3.0 m/s的高度动态接地步态。
translated by 谷歌翻译
我们解决了使四足机器人能够使用强化学习在现实世界中执行精确的射击技巧的问题。开发算法使腿部机器人能够向给定的目标射击足球,这是一个具有挑战性的问题,它将机器人运动控制和计划结合到一项任务中。为了解决这个问题,我们需要考虑控制动态腿部机器人期间的动态限制和运动稳定性。此外,我们需要考虑运动计划,以在地面上射击难以模拟的可变形球,并不确定摩擦到所需的位置。在本文中,我们提出了一个层次结构框架,该框架利用深厚的强化学习来训练(a)强大的运动控制政策,可以跟踪任意动议,以及(b)一项计划政策,以决定所需的踢球运动将足球射击到目标。我们将提议的框架部署在A1四足动物机器人上,使其能够将球准确地射击到现实世界中的随机目标。
translated by 谷歌翻译