我们使用加强学习(RL)来处理数据中心中网络拥塞控制的任务。成功的拥堵控制算法可以显着改善延迟和整体网络吞吐量。直到今天,尚无此类基于学习的算法在该领域显示出实际潜力。显然,最近最受欢迎的部署依赖于基于规则的启发式方法,这些启发式方法经过预定的一组基准测试。因此,这些启发式方法并不能很好地概括到新近观察的场景上。相反,我们设计了一种基于RL的算法,目的是将其推广到现实世界数据中心网络的不同配置。我们克服了诸如部分观察性,非平稳性和多目标的挑战。我们进一步提出了一种利用奖励函数的分析结构来近似其导数并提高稳定性的策略梯度算法。我们表明,该方案的表现优于其他流行的RL方法,并概括了训练中未见的场景。我们的实验是在模拟通信网络行为的现实模拟器上进行的,与今天在实际数据中心中部署的流行算法相比,在多个考虑的指标上同时表现出了改进的性能。我们的算法正在生产起来,以取代世界上一些最大的数据中心中的启发式方法。
translated by 谷歌翻译
云数据中心的数字和大小都在成倍增长。这种增加导致网络活动激增,可以更好地避免交通拥堵。最终的挑战是两个方面:(i)设计算法,可以对给定数据中心的复杂流量模式进行定制;但是,与此同时(ii)在低级硬件上运行,具有有效拥塞控制(CC)所需的低潜伏期。在这项工作中,我们提出了一个基于强化学习(RL)的CC解决方案,该解决方案从某些交通情况中学习并成功地将其推广到他人。然后,我们将RL神经网络政策提炼成二进制决策树,以实现与RDMA实时推断所需的$ \ mu $ sec决策延迟。我们在真实网络中部署了NVIDIA NIC的蒸馏政策,并展示了最先进的性能,同时平衡所有测试的指标:带宽,延迟,公平和数据包下降。
translated by 谷歌翻译
交通优化挑战,如负载平衡,流量调度和提高数据包交付时间,是广域网(WAN)中困难的在线决策问题。例如,需要复杂的启发式方法,以找到改善分组输送时间并最小化可能由链接故障或拥塞引起的中断的最佳路径。最近的加强学习(RL)算法的成功可以提供有用的解决方案,以建立更好的鲁棒系统,这些系统从无模式设置中学习。在这项工作中,我们考虑了一条路径优化问题,专门针对数据包路由,在大型复杂网络中。我们开发和评估一种无模型方法,应用多代理元增强学习(MAMRL),可以确定每个数据包的下一跳,以便将其传递到其目的地,最短的时间整体。具体地,我们建议利用和比较深度策略优化RL算法,以便在通信网络中启用分布式无模型控制,并呈现基于新的Meta学习的框架Mamrl,以便快速适应拓扑变化。为了评估所提出的框架,我们用各种WAN拓扑模拟。我们广泛的数据包级仿真结果表明,与古典最短路径和传统的加强学习方法相比,Mamrl即使网络需求增加也显着降低了平均分组交付时间;与非元深策略优化算法相比,我们的结果显示在连杆故障发生的同时出现相当的平均数据包交付时间时减少较少的剧集中的数据包丢失。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
Efficient data transfers over high-speed, long-distance shared networks require proper utilization of available network bandwidth. Using parallel TCP streams enables an application to utilize network parallelism and can improve transfer throughput; however, finding the optimum number of parallel TCP streams is challenging due to nondeterministic background traffic sharing the same network. Additionally, the non-stationary, multi-objectiveness, and partially-observable nature of network signals in the host systems add extra complexity in finding the current network condition. In this work, we present a novel approach to finding the optimum number of parallel TCP streams using deep reinforcement learning (RL). We devise a learning-based algorithm capable of generalizing different network conditions and utilizing the available network bandwidth intelligently. Contrary to rule-based heuristics that do not generalize well in unknown network scenarios, our RL-based solution can dynamically discover and adapt the parallel TCP stream numbers to maximize the network bandwidth utilization without congesting the network and ensure fairness among contending transfers. We extensively evaluated our RL-based algorithm's performance, comparing it with several state-of-the-art online optimization algorithms. The results show that our RL-based algorithm can find near-optimal solutions 40% faster while achieving up to 15% higher throughput. We also show that, unlike a greedy algorithm, our devised RL-based algorithm can avoid network congestion and fairly share the available network resources among contending transfers.
translated by 谷歌翻译
本文使用多代理增强学习(MARL)框架来研究数据中心(DC)中的网络负载平衡问题,其中部署了多个负载平衡器(LBS)。该问题的挑战包括异质的处理架构和动态环境,以及分布式网络系统中每个LB代理的有限和部分可观察性,这可能会大大降低实际设置中的生产负载平衡算法的性能。已经提出了中央化训练 - 分类 - 切除(CTDE)RL方案来提高MARL性能,但它会产生 - 尤其是在分布式网络系统中,这些网络系统更喜欢分布式和插入式设计方案 - 额外的通信和管理代理商。我们将多代理负载平衡问题作为马尔可夫潜在游戏,并精心设计的工作负载分配公平作为潜在功能。提出了完全分布的MARL算法,以近似游戏的NASH平衡。实验评估既涉及事件驱动的模拟器和现实世界系统,在该系统中,所提出的MARL负载平衡算法在模拟中显示出接近最佳的性能,而在现实世界系统中的生产lbs效果优于较高的结果。
translated by 谷歌翻译
高度动态的移动ad-hoc网络(MANET)仍然是开发和部署强大,高效和可扩展的路由协议的最具挑战性环境之一。在本文中,我们提出了DeepCQ +路由协议,以一种新颖的方式将新兴的多代理深度增强学习(Madrl)技术集成到现有的基于Q学习的路由协议及其变体中,并在各种拓扑结构中实现了持续更高的性能和移动配置。在保持基于Q学习的路由协议的整体协议结构的同时,DeepCQ +通过精心设计的Madrl代理替换静态配置的参数化阈值和手写规则,使得不需要这些参数的配置。广泛的模拟表明,与其基于Q学习的对应物相比,DeptCQ +产生的端到端吞吐量显着增加了端到端延迟(跳数)的明显劣化。在定性方面,也许更重要的是,Deepcq +在许多情况下维持了非常相似的性能提升,即在网络尺寸,移动条件和交通动态方面没有接受过培训。据我们所知,这是Madrl框架的第一次成功应用MANET路由问题,即使在训练有素的场景范围之外的环境中,即使在训练范围之外的环境中也能够高度的可扩展性和鲁棒性。这意味着我们的基于Marl的DeepCQ +设计解决方案显着提高了基于Q学习的CQ +基线方法的性能,以进行比较,并提高其实用性和解释性,因为现实世界的MANET环境可能会在训练范围的MANET场景之外变化。讨论了进一步提高性能和可扩展性的增益的额外技术。
translated by 谷歌翻译
流动性和流量的许多方案都涉及多种不同的代理,需要合作以找到共同解决方案。行为计划的最新进展使用强化学习以寻找有效和绩效行为策略。但是,随着自动驾驶汽车和车辆对X通信变得越来越成熟,只有使用单身独立代理的解决方案在道路上留下了潜在的性能增长。多代理增强学习(MARL)是一个研究领域,旨在为彼此相互作用的多种代理找到最佳解决方案。这项工作旨在将该领域的概述介绍给研究人员的自主行动能力。我们首先解释Marl并介绍重要的概念。然后,我们讨论基于Marl算法的主要范式,并概述每个范式中最先进的方法和思想。在这种背景下,我们调查了MAL在自动移动性场景中的应用程序,并概述了现有的场景和实现。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
translated by 谷歌翻译
本文提出了网络负载平衡问题,这是多项式增强学习(MARL)方法的一项挑战性的现实世界。传统的启发式解决方案,例如加权成本多路径(WCMP)和局部最短队列(LSQ),对不断变化的工作量分布和到达率的灵活性较小,并且在多个负载平衡器之间的平衡差。合作网络负载平衡任务被提出为DECPOMDP问题,该问题自然诱导了MARL方法。为了弥合现实差距用于应用基于学习的方法,所有方法均已直接训练和评估来自中度到大规模的仿真系统。对现实测试床的实验表明,独立和“自私”负载平衡策略不一定是全球最佳的,而拟议的MARL解决方案比不同的现实设置具有出色的性能。此外,分析了MAL方法在网络负载平衡中的潜在困难,这有助于吸引学习和网络社区的注意力。
translated by 谷歌翻译
Autonomous vehicles are suited for continuous area patrolling problems. However, finding an optimal patrolling strategy can be challenging for many reasons. Firstly, patrolling environments are often complex and can include unknown and evolving environmental factors. Secondly, autonomous vehicles can have failures or hardware constraints such as limited battery lives. Importantly, patrolling large areas often requires multiple agents that need to collectively coordinate their actions. In this work, we consider these limitations and propose an approach based on a distributed, model-free deep reinforcement learning based multi-agent patrolling strategy. In this approach, agents make decisions locally based on their own environmental observations and on shared information. In addition, agents are trained to automatically recharge themselves when required to support continuous collective patrolling. A homogeneous multi-agent architecture is proposed, where all patrolling agents have an identical policy. This architecture provides a robust patrolling system that can tolerate agent failures and allow supplementary agents to be added to replace failed agents or to increase the overall patrol performance. This performance is validated through experiments from multiple perspectives, including the overall patrol performance, the efficiency of the battery recharging strategy, the overall robustness of the system, and the agents' ability to adapt to environment dynamics.
translated by 谷歌翻译
评估网络协议的真实表现是具有挑战性的。随机控制试验(RCT)对大多数研究人员来说是昂贵的并且无法进入,而专业设计的模拟器则无法捕获真实网络中的复杂行为。我们呈现MaunAlim,一种数据驱动的模拟器,用于解决这一挑战的网络协议。由于数据收集期间使用的协议引入的偏差,从观察数据中学习网络行为是复杂的。 MakAlAIM在一组协议下使用来自初始RCT的迹线来学习因果网络模型,有效地去除数据中存在的偏差。然后,使用此模型,可以在同一迹线上模拟任何协议(即,用于反事实预测)。因果的关键是对来自来自RCT的训练数据引起的分布修正因的对抗性神经网络培训进行了新的使用。我们对实际和合成数据集的MAURALAIM的广泛评估以及来自河豚视频流系统的两种用例,包括来自河豚视频流系统的超过九个月的实际数据,表明它提供了准确的反事预测,将预测误差降低了44%和53%平均值与专家设计和标准的监督学习基线相比。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
为移动无线网络设计有效的路由策略是具有挑战性的,因为需要无缝将路由行为调整为空间多样化和时间变化的网络条件。在这项工作中,我们使用深层增强学习(DEEPRL)来学习此类网络的可扩展和可概括的单复制路由策略。我们做出以下贡献:i)我们设计了一个奖励功能,使DeepRL代理能够明确权衡竞争的网络目标,例如最大程度地减少延迟与每个数据包的传输数量; ii)我们提出了一组新型的关系邻域,路径和上下文功能,以独立于特定的网络拓扑表征移动无线网络和模型设备移动性; iii)我们使用一种灵活的培训方法,使我们可以将所有数据包和设备的数据组合到单个离线集中式培训设置中,以训练单个DEEPRL代理。为了评估通用性和可扩展性,我们在一个移动网络方案上训练我们的DEEPRL代理,然后在其他移动方案上进行测试,从而改变了设备和变速箱范围的数量。我们的结果表明,我们学到的单拷贝路由策略在延迟方面优于所有其他策略,即使在未经培训的情况下,即使在DeepRL代理的情况下也是如此。
translated by 谷歌翻译
深度强化学习(DRL)和深度多机构的强化学习(MARL)在包括游戏AI,自动驾驶汽车,机器人技术等各种领域取得了巨大的成功。但是,众所周知,DRL和Deep MARL代理的样本效率低下,即使对于相对简单的问题设置,通常也需要数百万个相互作用,从而阻止了在实地场景中的广泛应用和部署。背后的一个瓶颈挑战是众所周知的探索问题,即如何有效地探索环境和收集信息丰富的经验,从而使政策学习受益于最佳研究。在稀疏的奖励,吵闹的干扰,长距离和非平稳的共同学习者的复杂环境中,这个问题变得更加具有挑战性。在本文中,我们对单格和多代理RL的现有勘探方法进行了全面的调查。我们通过确定有效探索的几个关键挑战开始调查。除了上述两个主要分支外,我们还包括其他具有不同思想和技术的著名探索方法。除了算法分析外,我们还对一组常用基准的DRL进行了全面和统一的经验比较。根据我们的算法和实证研究,我们终于总结了DRL和Deep Marl中探索的公开问题,并指出了一些未来的方向。
translated by 谷歌翻译
The high emission and low energy efficiency caused by internal combustion engines (ICE) have become unacceptable under environmental regulations and the energy crisis. As a promising alternative solution, multi-power source electric vehicles (MPS-EVs) introduce different clean energy systems to improve powertrain efficiency. The energy management strategy (EMS) is a critical technology for MPS-EVs to maximize efficiency, fuel economy, and range. Reinforcement learning (RL) has become an effective methodology for the development of EMS. RL has received continuous attention and research, but there is still a lack of systematic analysis of the design elements of RL-based EMS. To this end, this paper presents an in-depth analysis of the current research on RL-based EMS (RL-EMS) and summarizes the design elements of RL-based EMS. This paper first summarizes the previous applications of RL in EMS from five aspects: algorithm, perception scheme, decision scheme, reward function, and innovative training method. The contribution of advanced algorithms to the training effect is shown, the perception and control schemes in the literature are analyzed in detail, different reward function settings are classified, and innovative training methods with their roles are elaborated. Finally, by comparing the development routes of RL and RL-EMS, this paper identifies the gap between advanced RL solutions and existing RL-EMS. Finally, this paper suggests potential development directions for implementing advanced artificial intelligence (AI) solutions in EMS.
translated by 谷歌翻译
在本文中,我们重新审视了钢筋学习(RL)途径的一些基本场所,以自学习红绿灯。我们提出了一种选择的选择,提供强大的性能和良好的通知来看不见的交通流量。特别是,我们的主要贡献是三倍:我们的轻量级和聚类感知状态表示导致性能提高;我们重新格式化马尔可夫决策过程(MDP),使得它跳过冗余的黄灯时间,加快学习30%;我们调查了行动空间,并提供了对非循环和循环转换之间的性能差异的洞察。此外,我们提供了对未经证明交通的方法的概念性的见解。使用现实世界杭州交通数据集的评估表明,绘图优于最先进的规则和深度增强学习算法,展示了基于RL的方法来改善城市交通流量的潜力。
translated by 谷歌翻译
随着自动驾驶行业的发展,自动驾驶汽车群体的潜在相互作用也随之增长。结合人工智能和模拟的进步,可以模拟此类组,并且可以学习控制内部汽车的安全模型。这项研究将强化学习应用于多代理停车场的问题,在那里,汽车旨在有效地停车,同时保持安全和理性。利用强大的工具和机器学习框架,我们以马尔可夫决策过程的形式与独立学习者一起设计和实施灵活的停车环境,从而利用多代理通信。我们实施了一套工具来进行大规模执行实验,从而取得了超过98.1%成功率的高达7辆汽车的模型,从而超过了现有的单代机构模型。我们还获得了与汽车在我们环境中表现出的竞争性和协作行为有关的几个结果,这些行为的密度和沟通水平各不相同。值得注意的是,我们发现了一种没有竞争的合作形式,以及一种“泄漏”的合作形式,在没有足够状态的情况下,代理商进行了协作。这种工作在自动驾驶和车队管理行业中具有许多潜在的应用,并为将强化学习应用于多机构停车场提供了几种有用的技术和基准。
translated by 谷歌翻译