本文提出了网络负载平衡问题,这是多项式增强学习(MARL)方法的一项挑战性的现实世界。传统的启发式解决方案,例如加权成本多路径(WCMP)和局部最短队列(LSQ),对不断变化的工作量分布和到达率的灵活性较小,并且在多个负载平衡器之间的平衡差。合作网络负载平衡任务被提出为DECPOMDP问题,该问题自然诱导了MARL方法。为了弥合现实差距用于应用基于学习的方法,所有方法均已直接训练和评估来自中度到大规模的仿真系统。对现实测试床的实验表明,独立和“自私”负载平衡策略不一定是全球最佳的,而拟议的MARL解决方案比不同的现实设置具有出色的性能。此外,分析了MAL方法在网络负载平衡中的潜在困难,这有助于吸引学习和网络社区的注意力。
translated by 谷歌翻译
本文使用多代理增强学习(MARL)框架来研究数据中心(DC)中的网络负载平衡问题,其中部署了多个负载平衡器(LBS)。该问题的挑战包括异质的处理架构和动态环境,以及分布式网络系统中每个LB代理的有限和部分可观察性,这可能会大大降低实际设置中的生产负载平衡算法的性能。已经提出了中央化训练 - 分类 - 切除(CTDE)RL方案来提高MARL性能,但它会产生 - 尤其是在分布式网络系统中,这些网络系统更喜欢分布式和插入式设计方案 - 额外的通信和管理代理商。我们将多代理负载平衡问题作为马尔可夫潜在游戏,并精心设计的工作负载分配公平作为潜在功能。提出了完全分布的MARL算法,以近似游戏的NASH平衡。实验评估既涉及事件驱动的模拟器和现实世界系统,在该系统中,所提出的MARL负载平衡算法在模拟中显示出接近最佳的性能,而在现实世界系统中的生产lbs效果优于较高的结果。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
交通优化挑战,如负载平衡,流量调度和提高数据包交付时间,是广域网(WAN)中困难的在线决策问题。例如,需要复杂的启发式方法,以找到改善分组输送时间并最小化可能由链接故障或拥塞引起的中断的最佳路径。最近的加强学习(RL)算法的成功可以提供有用的解决方案,以建立更好的鲁棒系统,这些系统从无模式设置中学习。在这项工作中,我们考虑了一条路径优化问题,专门针对数据包路由,在大型复杂网络中。我们开发和评估一种无模型方法,应用多代理元增强学习(MAMRL),可以确定每个数据包的下一跳,以便将其传递到其目的地,最短的时间整体。具体地,我们建议利用和比较深度策略优化RL算法,以便在通信网络中启用分布式无模型控制,并呈现基于新的Meta学习的框架Mamrl,以便快速适应拓扑变化。为了评估所提出的框架,我们用各种WAN拓扑模拟。我们广泛的数据包级仿真结果表明,与古典最短路径和传统的加强学习方法相比,Mamrl即使网络需求增加也显着降低了平均分组交付时间;与非元深策略优化算法相比,我们的结果显示在连杆故障发生的同时出现相当的平均数据包交付时间时减少较少的剧集中的数据包丢失。
translated by 谷歌翻译
多用户延迟约束调度在许多现实世界应用中都很重要,包括无线通信,实时流和云计算。然而,它提出了一个关键的挑战,因为调度程序需要做出实时决策,以确保没有系统动力学的先前信息,这可能是时间变化且难以估算的。此外,许多实际情况都遭受了部分可观察性问题的影响,例如,由于感应噪声或隐藏的相关性。为了应对这些挑战,我们提出了一种深入的强化学习(DRL)算法,称为Recurrent Softmax延迟深层双重确定性策略梯度($ \ Mathtt {RSD4} $),这是一种基于数据驱动的方法,基于部分观察到的Markov决策过程(POMDP)配方。 $ \ mathtt {rsd4} $分别通过拉格朗日双重和延迟敏感的队列保证资源和延迟约束。它还可以通过复发性神经网络(RNN)启用的记忆机制有效地解决部分可观察性,并引入用户级分解和节点级别的合并以确保可扩展性。对模拟/现实世界数据集的广泛实验表明,$ \ mathtt {rsd4} $对系统动力学和部分可观察到的环境是可靠的,并且在现有的DRL和非基于DRL的方法上实现了卓越的性能。
translated by 谷歌翻译
事件处理是动态和响应互联网(物联网)的基石。该领域的最近方法基于代表性状态转移(REST)原则,其允许将事件处理任务放置在遵循相同原理的任何设备上。但是,任务应在边缘设备之间正确分布,以确保公平资源利用率和保证无缝执行。本文调查了深入学习的使用,以公平分配任务。提出了一种基于关注的神经网络模型,在不同场景下产生有效的负载平衡解决方案。所提出的模型基于变压器和指针网络架构,并通过Advantage演员批评批评学习算法训练。该模型旨在缩放到事件处理任务的数量和边缘设备的数量,不需要重新调整甚至再刷新。广泛的实验结果表明,拟议的模型在许多关键绩效指标中优于传统的启发式。通用设计和所获得的结果表明,所提出的模型可能适用于几个其他负载平衡问题变化,这使得该提案是由于其可扩展性和效率而在现实世界场景中使用的有吸引力的选择。
translated by 谷歌翻译
近年来,数据中心和云服务的容量和并行处理能力大大提高。为了充分利用所述分布式系统,必须实现并行排队架构的最佳负载平衡。现有的最新解决方案未能考虑沟通延迟对许多客户的非常大系统的行为的影响。在这项工作中,我们考虑了一个多代理负载平衡系统,其中包含延迟信息,包括许多客户(负载平衡器)和许多并行队列。为了获得可处理的解决方案,我们通过精确离散化在离散时间内将该系统建模为具有扩大状态行动空间的平均场控制问题。随后,我们应用政策梯度增强学习算法来找到最佳的负载平衡解决方案。在这里,离散时间系统模型包含了同步延迟,在该延迟下,在所有客户端,队列状态信息同步广播和更新。然后,我们在大型系统中为我们的方法提供了理论性能保证。最后,使用实验,我们证明了我们的方法不仅可扩展,而且与最新的Join-the-the-the-the-the-the-the-the-the-the-the-the-the-the-the-the-the-the warriant相比,还表现出良好的性能(JSQ)和其他在同步延迟的情况下政策。
translated by 谷歌翻译
5G及以后的移动网络将以前所未有的规模支持异质用例,从而要求自动控制和优化针对单个用户需求的网络功能。当前的蜂窝体系结构不可能对无线电访问网络(RAN)进行这种细粒度控制。为了填补这一空白,开放式运行范式及其规范引入了一个带有抽象的开放体系结构,该架构可以启用闭环控制并提供数据驱动和智能优化RAN在用户级别上。这是通过在网络边缘部署在近实时RAN智能控制器(接近RT RIC)上的自定义RAN控制应用程序(即XAPP)获得的。尽管有这些前提,但截至今天,研究界缺乏用于构建数据驱动XAPP的沙箱,并创建大型数据集以有效的AI培训。在本文中,我们通过引入NS-O-RAN来解决此问题,NS-O-RAN是一个软件框架,该框架将现实世界中的生产级近距离RIC与NS-3上的基于3GPP的模拟环境集成在一起,从而实现了XAPPS和XAPPS的开发自动化的大规模数据收集和深入强化学习驱动的控制策略的测试,以在用户级别的优化中进行优化。此外,我们提出了第一个特定于用户的O-RAN交通转向(TS)智能移交框架。它使用随机的合奏混合物,结合了最先进的卷积神经网络体系结构,以最佳地为网络中的每个用户分配服务基站。我们的TS XAPP接受了NS-O-RAN收集的超过4000万个数据点的培训,该数据点在近距离RIC上运行,并控制其基站。我们在大规模部署中评估了性能,这表明基于XAPP的交换可以使吞吐量和频谱效率平均比传统的移交启发式方法提高50%,而动机性开销较少。
translated by 谷歌翻译
高度动态的移动ad-hoc网络(MANET)仍然是开发和部署强大,高效和可扩展的路由协议的最具挑战性环境之一。在本文中,我们提出了DeepCQ +路由协议,以一种新颖的方式将新兴的多代理深度增强学习(Madrl)技术集成到现有的基于Q学习的路由协议及其变体中,并在各种拓扑结构中实现了持续更高的性能和移动配置。在保持基于Q学习的路由协议的整体协议结构的同时,DeepCQ +通过精心设计的Madrl代理替换静态配置的参数化阈值和手写规则,使得不需要这些参数的配置。广泛的模拟表明,与其基于Q学习的对应物相比,DeptCQ +产生的端到端吞吐量显着增加了端到端延迟(跳数)的明显劣化。在定性方面,也许更重要的是,Deepcq +在许多情况下维持了非常相似的性能提升,即在网络尺寸,移动条件和交通动态方面没有接受过培训。据我们所知,这是Madrl框架的第一次成功应用MANET路由问题,即使在训练有素的场景范围之外的环境中,即使在训练范围之外的环境中也能够高度的可扩展性和鲁棒性。这意味着我们的基于Marl的DeepCQ +设计解决方案显着提高了基于Q学习的CQ +基线方法的性能,以进行比较,并提高其实用性和解释性,因为现实世界的MANET环境可能会在训练范围的MANET场景之外变化。讨论了进一步提高性能和可扩展性的增益的额外技术。
translated by 谷歌翻译
多访问边缘计算(MEC)是一个新兴的计算范式,将云计算扩展到网络边缘,以支持移动设备上的资源密集型应用程序。作为MEC的关键问题,服务迁移需要决定如何迁移用户服务,以维持用户在覆盖范围和容量有限的MEC服务器之间漫游的服务质量。但是,由于动态的MEC环境和用户移动性,找到最佳的迁移策略是棘手的。许多现有研究根据完整的系统级信息做出集中式迁移决策,这是耗时的,并且缺乏理想的可扩展性。为了应对这些挑战,我们提出了一种新颖的学习驱动方法,该方法以用户为中心,可以通过使用不完整的系统级信息来做出有效的在线迁移决策。具体而言,服务迁移问题被建模为可观察到的马尔可夫决策过程(POMDP)。为了解决POMDP,我们设计了一个新的编码网络,该网络结合了长期记忆(LSTM)和一个嵌入式矩阵,以有效提取隐藏信息,并进一步提出了一种定制的非政策型演员 - 批判性算法,以进行有效的训练。基于现实世界的移动性痕迹的广泛实验结果表明,这种新方法始终优于启发式和最先进的学习驱动算法,并且可以在各种MEC场景上取得近乎最佳的结果。
translated by 谷歌翻译
云数据中心的数字和大小都在成倍增长。这种增加导致网络活动激增,可以更好地避免交通拥堵。最终的挑战是两个方面:(i)设计算法,可以对给定数据中心的复杂流量模式进行定制;但是,与此同时(ii)在低级硬件上运行,具有有效拥塞控制(CC)所需的低潜伏期。在这项工作中,我们提出了一个基于强化学习(RL)的CC解决方案,该解决方案从某些交通情况中学习并成功地将其推广到他人。然后,我们将RL神经网络政策提炼成二进制决策树,以实现与RDMA实时推断所需的$ \ mu $ sec决策延迟。我们在真实网络中部署了NVIDIA NIC的蒸馏政策,并展示了最先进的性能,同时平衡所有测试的指标:带宽,延迟,公平和数据包下降。
translated by 谷歌翻译
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
translated by 谷歌翻译
多代理深入的强化学习已应用于解决各种离散或连续动作空间的各种复杂问题,并取得了巨大的成功。但是,大多数实际环境不能仅通过离散的动作空间或连续的动作空间来描述。而且很少有作品曾经利用深入的加固学习(DRL)来解决混合动作空间的多代理问题。因此,我们提出了一种新颖的算法:深层混合软性角色 - 批评(MAHSAC)来填补这一空白。该算法遵循集中式训练但分散执行(CTDE)范式,并扩展软actor-Critic算法(SAC),以根据最大熵在多机构环境中处理混合动作空间问题。我们的经验在一个简单的多代理粒子世界上运行,具有连续的观察和离散的动作空间以及一些基本的模拟物理。实验结果表明,MAHSAC在训练速度,稳定性和抗干扰能力方面具有良好的性能。同时,它在合作场景和竞争性场景中胜过现有的独立深层学习方法。
translated by 谷歌翻译
Recent advances in distributed artificial intelligence (AI) have led to tremendous breakthroughs in various communication services, from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wirelessly connected devices, random channel fluctuations and the incumbent services running on the same network impact the performance of both distributed learning and the coexisting service. In this paper, we investigate a mixed service scenario where distributed AI workflow and ultra-reliable low latency communication (URLLC) services run concurrently over a network. Consequently, we propose a risk sensitivity-based formulation for device selection to minimize the AI training delays during its convergence period while ensuring that the operational requirements of the URLLC service are met. To address this challenging coexistence problem, we transform it into a deep reinforcement learning problem and address it via a framework based on soft actor-critic algorithm. We evaluate our solution with a realistic and 3GPP-compliant simulator for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delay of the distributed AI service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all network resources.
translated by 谷歌翻译
本文提出了一种有效且新颖的多重深度强化学习(MADRL)的方法,用于解决联合虚拟网络功能(VNF)的位置和路由(P&R),其中同时提供了具有差异性要求的多个服务请求。服务请求的差异要求反映出其延迟和成本敏感的因素。我们首先构建了VNF P&R问题,以共同减少NP完整的服务延迟和资源消耗成本的加权总和。然后,将关节VNF P&R问题分解为两个迭代子任务:放置子任务和路由子任务。每个子任务由多个并发并行顺序决策过程组成。通过调用深层确定性策略梯度方法和多代理技术,MADRL-P&R框架旨在执行两个子任务。提出了新的联合奖励和内部奖励机制,以匹配安置和路由子任务的目标和约束。我们还提出了基于参数迁移的模型重新训练方法来处理不断变化的网络拓扑。通过实验证实,提议的MADRL-P&R框架在服务成本和延迟方面优于其替代方案,并为个性化服务需求提供了更高的灵活性。基于参数迁移的模型重新训练方法可以在中等网络拓扑变化下有效加速收敛。
translated by 谷歌翻译
将深度强化学习(DRL)扩展到多代理领域的研究已经解决了许多复杂的问题,并取得了重大成就。但是,几乎所有这些研究都只关注离散或连续的动作空间,而且很少有作品曾经使用过多代理的深度强化学习来实现现实世界中的环境问题,这些问题主要具有混合动作空间。因此,在本文中,我们提出了两种算法:深层混合软性角色批评(MAHSAC)和多代理混合杂种深层确定性政策梯度(MAHDDPG)来填补这一空白。这两种算法遵循集中式培训和分散执行(CTDE)范式,并可以解决混合动作空间问题。我们的经验在多代理粒子环境上运行,这是一个简单的多代理粒子世界,以及一些基本的模拟物理。实验结果表明,这些算法具有良好的性能。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
Reinforcement learning in multi-agent scenarios is important for real-world applications but presents challenges beyond those seen in singleagent settings. We present an actor-critic algorithm that trains decentralized policies in multiagent settings, using centrally computed critics that share an attention mechanism which selects relevant information for each agent at every timestep. This attention mechanism enables more effective and scalable learning in complex multiagent environments, when compared to recent approaches. Our approach is applicable not only to cooperative settings with shared rewards, but also individualized reward settings, including adversarial settings, as well as settings that do not provide global states, and it makes no assumptions about the action spaces of the agents. As such, it is flexible enough to be applied to most multi-agent learning problems.
translated by 谷歌翻译
评估网络协议的真实表现是具有挑战性的。随机控制试验(RCT)对大多数研究人员来说是昂贵的并且无法进入,而专业设计的模拟器则无法捕获真实网络中的复杂行为。我们呈现MaunAlim,一种数据驱动的模拟器,用于解决这一挑战的网络协议。由于数据收集期间使用的协议引入的偏差,从观察数据中学习网络行为是复杂的。 MakAlAIM在一组协议下使用来自初始RCT的迹线来学习因果网络模型,有效地去除数据中存在的偏差。然后,使用此模型,可以在同一迹线上模拟任何协议(即,用于反事实预测)。因果的关键是对来自来自RCT的训练数据引起的分布修正因的对抗性神经网络培训进行了新的使用。我们对实际和合成数据集的MAURALAIM的广泛评估以及来自河豚视频流系统的两种用例,包括来自河豚视频流系统的超过九个月的实际数据,表明它提供了准确的反事预测,将预测误差降低了44%和53%平均值与专家设计和标准的监督学习基线相比。
translated by 谷歌翻译
大型人口系统的分析和控制对研究和工程的各个领域引起了极大的兴趣,从机器人群的流行病学到经济学和金融。一种越来越流行和有效的方法来实现多代理系统中的顺序决策,这是通过多机构增强学习,因为它允许对高度复杂的系统进行自动和无模型的分析。但是,可伸缩性的关键问题使控制和增强学习算法的设计变得复杂,尤其是在具有大量代理的系统中。尽管强化学习在许多情况下都发现了经验成功,但许多代理商的问题很快就变得棘手了,需要特别考虑。在这项调查中,我们将阐明当前的方法,以通过多代理强化学习以及通过诸如平均场游戏,集体智能或复杂的网络理论等研究领域进行仔细理解和分析大型人口系统。这些经典独立的主题领域提供了多种理解或建模大型人口系统的方法,这可能非常适合将来的可拖动MARL算法制定。最后,我们调查了大规模控制的潜在应用领域,并确定了实用系统中学习算法的富有成果的未来应用。我们希望我们的调查可以为理论和应用科学的初级和高级研究人员提供洞察力和未来的方向。
translated by 谷歌翻译