多用户延迟约束调度在许多现实世界应用中都很重要,包括无线通信,实时流和云计算。然而,它提出了一个关键的挑战,因为调度程序需要做出实时决策,以确保没有系统动力学的先前信息,这可能是时间变化且难以估算的。此外,许多实际情况都遭受了部分可观察性问题的影响,例如,由于感应噪声或隐藏的相关性。为了应对这些挑战,我们提出了一种深入的强化学习(DRL)算法,称为Recurrent Softmax延迟深层双重确定性策略梯度($ \ Mathtt {RSD4} $),这是一种基于数据驱动的方法,基于部分观察到的Markov决策过程(POMDP)配方。 $ \ mathtt {rsd4} $分别通过拉格朗日双重和延迟敏感的队列保证资源和延迟约束。它还可以通过复发性神经网络(RNN)启用的记忆机制有效地解决部分可观察性,并引入用户级分解和节点级别的合并以确保可扩展性。对模拟/现实世界数据集的广泛实验表明,$ \ mathtt {rsd4} $对系统动力学和部分可观察到的环境是可靠的,并且在现有的DRL和非基于DRL的方法上实现了卓越的性能。
translated by 谷歌翻译
多访问边缘计算(MEC)是一个新兴的计算范式,将云计算扩展到网络边缘,以支持移动设备上的资源密集型应用程序。作为MEC的关键问题,服务迁移需要决定如何迁移用户服务,以维持用户在覆盖范围和容量有限的MEC服务器之间漫游的服务质量。但是,由于动态的MEC环境和用户移动性,找到最佳的迁移策略是棘手的。许多现有研究根据完整的系统级信息做出集中式迁移决策,这是耗时的,并且缺乏理想的可扩展性。为了应对这些挑战,我们提出了一种新颖的学习驱动方法,该方法以用户为中心,可以通过使用不完整的系统级信息来做出有效的在线迁移决策。具体而言,服务迁移问题被建模为可观察到的马尔可夫决策过程(POMDP)。为了解决POMDP,我们设计了一个新的编码网络,该网络结合了长期记忆(LSTM)和一个嵌入式矩阵,以有效提取隐藏信息,并进一步提出了一种定制的非政策型演员 - 批判性算法,以进行有效的训练。基于现实世界的移动性痕迹的广泛实验结果表明,这种新方法始终优于启发式和最先进的学习驱动算法,并且可以在各种MEC场景上取得近乎最佳的结果。
translated by 谷歌翻译
未来的互联网涉及几种新兴技术,例如5G和5G网络,车辆网络,无人机(UAV)网络和物联网(IOT)。此外,未来的互联网变得异质并分散了许多相关网络实体。每个实体可能需要做出本地决定,以在动态和不确定的网络环境下改善网络性能。最近使用标准学习算法,例如单药强化学习(RL)或深入强化学习(DRL),以使每个网络实体作为代理人通过与未知环境进行互动来自适应地学习最佳决策策略。但是,这种算法未能对网络实体之间的合作或竞争进行建模,而只是将其他实体视为可能导致非平稳性问题的环境的一部分。多机构增强学习(MARL)允许每个网络实体不仅观察环境,还可以观察其他实体的政策来学习其最佳政策。结果,MAL可以显着提高网络实体的学习效率,并且最近已用于解决新兴网络中的各种问题。在本文中,我们因此回顾了MAL在新兴网络中的应用。特别是,我们提供了MARL的教程,以及对MARL在下一代互联网中的应用进行全面调查。特别是,我们首先介绍单代机Agent RL和MARL。然后,我们回顾了MAL在未来互联网中解决新兴问题的许多应用程序。这些问题包括网络访问,传输电源控制,计算卸载,内容缓存,数据包路由,无人机网络的轨迹设计以及网络安全问题。
translated by 谷歌翻译
网络切片允许移动网络运营商虚拟化基础架构,并提供定制的切片,以支持具有异构要求的各种用例。在线深度加强学习(DRL)在解决网络问题和消除模拟 - 现实差异方面表现出有希望的潜力。然而,在线DRL优化跨域资源,作为DRL的随机探索违反了切片的服务级别协议(SLA)和基础架构的资源限制。在本文中,我们提出了一个在线端到端网络切片系统的Onslicing,以实现最小的资源用法,同时满足切片的SLA。 Onslicing允许为每个切片个性化学习,并通过使用新的约束感知策略更新方法和主动基线切换机制来维护其SLA。在基础架构中的切片和参数协调中,符合基础设施的资源限制,符合基础架构的资源限制。 Onslicing进一步减轻了在早期学习阶段的在线学习的差表现不佳,该阶段模仿基于规则的解决方案。此外,我们设计了四个新的域管理员,可以分别在零档的时间尺寸,传输,核心和边缘网络中启用动态资源配置。我们在基于OpenAirInterface的端到端切片测试平面上实现了onSlicing,其中4G LTE和5G NR,OpenDaylight SDN平台和OpenAir-CN核心网络。实验结果表明,与基于规则的解决方案相比,持续达到61.3%的使用量减少,并在在线学习阶段保持近零违规(0.06%)。随着在线学习融合,与最先进的在线DRL解决方案相比,在没有任何违规的情况下,在没有任何违规的情况下减少了12.5%的使用。
translated by 谷歌翻译
Recent advances in distributed artificial intelligence (AI) have led to tremendous breakthroughs in various communication services, from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wirelessly connected devices, random channel fluctuations and the incumbent services running on the same network impact the performance of both distributed learning and the coexisting service. In this paper, we investigate a mixed service scenario where distributed AI workflow and ultra-reliable low latency communication (URLLC) services run concurrently over a network. Consequently, we propose a risk sensitivity-based formulation for device selection to minimize the AI training delays during its convergence period while ensuring that the operational requirements of the URLLC service are met. To address this challenging coexistence problem, we transform it into a deep reinforcement learning problem and address it via a framework based on soft actor-critic algorithm. We evaluate our solution with a realistic and 3GPP-compliant simulator for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delay of the distributed AI service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all network resources.
translated by 谷歌翻译
设想了一座低空地球轨道(LEO)卫星(SAT)的Mega-Constulation,以提供超出第五代(5G)蜂窝系统的全球覆盖网网络。 Leo SAT网络在时代的SAT网络拓扑中展示了许多用户的极长链接距离。这使得现有的多个访问协议,例如基于随机接入信道(RACH)的蜂窝协议,专为固定地面网络拓扑而设计,不适用于。为了克服这个问题,在本文中,我们提出了一种新颖的LEO SAT网络无随机访问解决方案,被称为随机接入信道协议(ERACH)。在与现有的基于模型和标准化协议的鲜明对比中,ERACH是一种无模型方法,通过使用多档次深度加强学习(Madrl),通过与非静止网络环境的互动出现。此外,通过利用已知的SAT轨道模式,ERACH不需要跨越用户的中心协调或额外的通信,而训练会聚通过规则的轨道模式稳定。与RACH相比,我们从各种模拟中展示了我们所提出的ERACH的平均网络吞吐量增加了54.6%,平均访问延迟较低的两倍,同时实现了0.989的jain的公平指数。
translated by 谷歌翻译
需要下一代无线网络以同时满足各种服务和标准。为了解决即将到来的严格条件,开发了具有柔性设计,分解虚拟和可编程组件以及智能闭环控制等特征的新型开放式访问网络(O-RAN)。面对不断变化的情况,O-Ran切片被研究为确保网络服务质量(QoS)的关键策略。但是,必须动态控制不同的网络切片,以避免由环境快速变化引起的服务水平一致性(SLA)变化。因此,本文介绍了一个新颖的框架,能够通过智能提供的提供资源来管理网络切片。由于不同的异质环境,智能机器学习方法需要足够的探索来处理无线网络中最严厉的情况并加速收敛。为了解决这个问题,提出了一种新解决方案,基于基于进化的深度强化学习(EDRL),以加速和优化无线电访问网络(RAN)智能控制器(RIC)模块中的切片管理学习过程。为此,O-RAN切片被表示为Markov决策过程(MDP),然后最佳地解决了资源分配,以使用EDRL方法满足服务需求。在达到服务需求方面,仿真结果表明,所提出的方法的表现优于DRL基线62.2%。
translated by 谷歌翻译
Terahertz频段(0.1---10 THZ)中的无线通信被视为未来第六代(6G)无线通信系统的关键促进技术之一,超出了大量多重输入多重输出(大量MIMO)技术。但是,THZ频率的非常高的传播衰减和分子吸收通常限制了信号传输距离和覆盖范围。从最近在可重构智能表面(RIS)上实现智能无线电传播环境的突破,我们为多跳RIS RIS辅助通信网络提供了一种新型的混合波束形成方案,以改善THZ波段频率的覆盖范围。特别是,部署了多个被动和可控的RIS,以协助基站(BS)和多个单人体用户之间的传输。我们通过利用最新的深钢筋学习(DRL)来应对传播损失的最新进展,研究了BS在BS和RISS上的模拟光束矩阵的联合设计。为了改善拟议的基于DRL的算法的收敛性,然后设计了两种算法,以初始化数字波束形成和使用交替优化技术的模拟波束形成矩阵。仿真结果表明,与基准相比,我们提出的方案能够改善50 \%的THZ通信范围。此外,还表明,我们提出的基于DRL的方法是解决NP-固定光束形成问题的最先进方法,尤其是当RIS辅助THZ通信网络的信号经历多个啤酒花时。
translated by 谷歌翻译
我们考虑了自主渠道访问(AutoCA)的问题,其中一组终端试图以分布式方式通过常见的无线通道发现具有访问点(AP)的通信策略。由于拓扑不规则和终端的通信范围有限,因此对AutoCA的实用挑战是隐藏的终端问题,在无线网络中臭名昭著,可以使吞吐量和延迟性能恶化。为了应对挑战,本文提出了一种新的多代理深钢筋学习范式,该学习范式被称为Madrl-HT,在存在隐藏码头的情况下为Autoca量身定制。 MADRL-HT利用拓扑见解,并将每个终端的观察空间转变为独立于终端数量的可扩展形式。为了补偿部分可观察性,我们提出了一种外观机制,以便终端可以从载体感知的通道状态以及AP的反馈中推断出其隐藏终端的行为。提出了基于窗口的全球奖励功能,从而指示终端在学习过程中平衡终端的传输机会,以最大程度地提高系统吞吐量。广泛的数值实验验证了我们的解决方案基准测试的优越性能,并通过避免碰撞(CSMA/CA)方案对旧的载体 - 义值访问。
translated by 谷歌翻译
In heterogeneous networks (HetNets), the overlap of small cells and the macro cell causes severe cross-tier interference. Although there exist some approaches to address this problem, they usually require global channel state information, which is hard to obtain in practice, and get the sub-optimal power allocation policy with high computational complexity. To overcome these limitations, we propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet, where each access point makes power control decisions independently based on local information. To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems. By introducing regularization terms in the loss function, each agent tends to choose an experienced action with high reward when revisiting a state, and thus the policy updating speed slows down. In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process. We then implement the proposed PQL in the considered HetNet and compare it with other distributed-training-and-execution (DTE) algorithms. Simulation results show that our proposed PQL can learn the desired power control policy from a dynamic environment where the locations of users change episodically and outperform existing DTE MADRL algorithms.
translated by 谷歌翻译
Hybrid FSO/RF system requires an efficient FSO and RF link switching mechanism to improve the system capacity by realizing the complementary benefits of both the links. The dynamics of network conditions, such as fog, dust, and sand storms compound the link switching problem and control complexity. To address this problem, we initiate the study of deep reinforcement learning (DRL) for link switching of hybrid FSO/RF systems. Specifically, in this work, we focus on actor-critic called Actor/Critic-FSO/RF and Deep-Q network (DQN) called DQN-FSO/RF for FSO/RF link switching under atmospheric turbulences. To formulate the problem, we define the state, action, and reward function of a hybrid FSO/RF system. DQN-FSO/RF frequently updates the deployed policy that interacts with the environment in a hybrid FSO/RF system, resulting in high switching costs. To overcome this, we lift this problem to ensemble consensus-based representation learning for deep reinforcement called DQNEnsemble-FSO/RF. The proposed novel DQNEnsemble-FSO/RF DRL approach uses consensus learned features representations based on an ensemble of asynchronous threads to update the deployed policy. Experimental results corroborate that the proposed DQNEnsemble-FSO/RF's consensus-learned features switching achieves better performance than Actor/Critic-FSO/RF, DQN-FSO/RF, and MyOpic for FSO/RF link switching while keeping the switching cost significantly low.
translated by 谷歌翻译
在这项工作中,我们优化了基于无人机(UAV)的便携式接入点(PAP)的3D轨迹,该轨迹为一组接地节点(GNS)提供无线服务。此外,根据Peukert效果,我们考虑无人机电池的实用非线性电池放电。因此,我们以一种新颖的方式提出问题,代表了基于公平的能源效率度量的最大化,并被称为公平能源效率(费用)。费用指标定义了一个系统,该系统对每用户服务的公平性和PAP的能源效率都非常重要。该法式问题采用非凸面问题的形式,并具有不可扣除的约束。为了获得解决方案,我们将问题表示为具有连续状态和动作空间的马尔可夫决策过程(MDP)。考虑到解决方案空间的复杂性,我们使用双胞胎延迟的深层确定性政策梯度(TD3)参与者 - 批判性深入强化学习(DRL)框架来学习最大化系统费用的政策。我们进行两种类型的RL培训来展示我们方法的有效性:第一种(离线)方法在整个训练阶段保持GN的位置相同;第二种方法将学习的政策概括为GN的任何安排,通过更改GN的位置,每次培训情节后。数值评估表明,忽视Peukert效应高估了PAP的播放时间,可以通过最佳选择PAP的飞行速度来解决。此外,用户公平,能源效率,因此可以通过有效地将PAP移动到GN上方,从而提高系统的费用价值。因此,我们注意到郊区,城市和茂密的城市环境的基线情景高达88.31%,272.34%和318.13%。
translated by 谷歌翻译
随着移动网络的增殖,我们正在遇到强大的服务多样化,这需要从现有网络的更大灵活性。建议网络切片作为5G和未来网络的资源利用解决方案,以解决这种可怕需求。在网络切片中,动态资源编排和网络切片管理对于最大化资源利用率至关重要。不幸的是,由于缺乏准确的模型和动态隐藏结构,这种过程对于传统方法来说太复杂。在不知道模型和隐藏结构的情况下,我们将问题作为受约束的马尔可夫决策过程(CMDP)制定。此外,我们建议使用Clara解决问题,这是一种基于钢筋的基于资源分配算法。特别是,我们分别使用自适应内部点策略优化和投影层分析累积和瞬时约束。评估表明,Clara明显优于资源配置的基线,通过服务需求保证。
translated by 谷歌翻译
本文提出了网络负载平衡问题,这是多项式增强学习(MARL)方法的一项挑战性的现实世界。传统的启发式解决方案,例如加权成本多路径(WCMP)和局部最短队列(LSQ),对不断变化的工作量分布和到达率的灵活性较小,并且在多个负载平衡器之间的平衡差。合作网络负载平衡任务被提出为DECPOMDP问题,该问题自然诱导了MARL方法。为了弥合现实差距用于应用基于学习的方法,所有方法均已直接训练和评估来自中度到大规模的仿真系统。对现实测试床的实验表明,独立和“自私”负载平衡策略不一定是全球最佳的,而拟议的MARL解决方案比不同的现实设置具有出色的性能。此外,分析了MAL方法在网络负载平衡中的潜在困难,这有助于吸引学习和网络社区的注意力。
translated by 谷歌翻译
FOG无线电访问网络(F-RAN)是一项有前途的技术,用户移动设备(MDS)可以将计算任务卸载到附近的FOG接入点(F-APS)。由于F-APS的资源有限,因此设计有效的任务卸载方案很重要。在本文中,通过考虑随时间变化的网络环境,制定了F-RAN中的动态计算卸载和资源分配问题,以最大程度地减少MD的任务执行延迟和能源消耗。为了解决该问题,提出了基于联合的深入强化学习(DRL)算法,其中深层确定性策略梯度(DDPG)算法在每个F-AP中执行计算卸载和资源分配。利用联合学习来培训DDPG代理,以降低培训过程的计算复杂性并保护用户隐私。仿真结果表明,与其他现有策略相比,提议的联合DDPG算法可以更快地实现MDS更快的任务执行延迟和能源消耗。
translated by 谷歌翻译
无人驾驶飞机(UAV)用作空中基础站,可将时间敏感的包装从物联网设备传递到附近的陆地底站(TBS)。在此类无人产用的物联网网络中安排数据包,以确保TBS在TBS上确保新鲜(或最新的)物联网设备的数据包是一个挑战性的问题,因为它涉及两个同时的步骤(i)(i)在IOT设备上生成的数据包的同时进行样本由UAVS [HOP-1]和(ii)将采样数据包从UAVS更新到TBS [Hop-2]。为了解决这个问题,我们建议针对两跳UAV相关的IoT网络的信息年龄(AOI)调度算法。首先,我们提出了一个低复杂的AOI调度程序,称为MAF-MAD,该计划使用UAV(HOP-1)和最大AOI差异(MAD)策略采样最大AOI(MAF)策略,以更新从无人机到TBS(Hop-2)。我们证明,MAF-MAD是理想条件下的最佳AOI调度程序(无线无线通道和在物联网设备上产生交通生成)。相反,对于一般条件(物联网设备的损失渠道条件和不同的周期性交通生成),提出了深厚的增强学习算法,即近端政策优化(PPO)基于调度程序。仿真结果表明,在所有考虑的一般情况下,建议的基于PPO的调度程序优于MAF-MAD,MAF和Round-Robin等其他调度程序。
translated by 谷歌翻译
Technology advancements in wireless communications and high-performance Extended Reality (XR) have empowered the developments of the Metaverse. The demand for Metaverse applications and hence, real-time digital twinning of real-world scenes is increasing. Nevertheless, the replication of 2D physical world images into 3D virtual world scenes is computationally intensive and requires computation offloading. The disparity in transmitted scene dimension (2D as opposed to 3D) leads to asymmetric data sizes in uplink (UL) and downlink (DL). To ensure the reliability and low latency of the system, we consider an asynchronous joint UL-DL scenario where in the UL stage, the smaller data size of the physical world scenes captured by multiple extended reality users (XUs) will be uploaded to the Metaverse Console (MC) to be construed and rendered. In the DL stage, the larger-size 3D virtual world scenes need to be transmitted back to the XUs. The decisions pertaining to computation offloading and channel assignment are optimized in the UL stage, and the MC will optimize power allocation for users assigned with a channel in the UL transmission stage. Some problems arise therefrom: (i) interactive multi-process chain, specifically Asynchronous Markov Decision Process (AMDP), (ii) joint optimization in multiple processes, and (iii) high-dimensional objective functions, or hybrid reward scenarios. To ensure the reliability and low latency of the system, we design a novel multi-agent reinforcement learning algorithm structure, namely Asynchronous Actors Hybrid Critic (AAHC). Extensive experiments demonstrate that compared to proposed baselines, AAHC obtains better solutions with preferable training time.
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译
This paper studies a model for online job scheduling in green datacenters. In green datacenters, resource availability depends on the power supply from the renewables. Intermittent power supply from renewables leads to intermittent resource availability, inducing job delays (and associated costs). Green datacenter operators must intelligently manage their workloads and available power supply to extract maximum benefits. The scheduler's objective is to schedule jobs on a set of resources to maximize the total value (revenue) while minimizing the overall job delay. A trade-off exists between achieving high job value on the one hand and low expected delays on the other. Hence, the aims of achieving high rewards and low costs are in opposition. In addition, datacenter operators often prioritize multiple objectives, including high system utilization and job completion. To accomplish the opposing goals of maximizing total job value and minimizing job delays, we apply the Proportional-Integral-Derivative (PID) Lagrangian methods in Deep Reinforcement Learning to job scheduling problem in the green datacenter environment. Lagrangian methods are widely used algorithms for constrained optimization problems. We adopt a controls perspective to learn the Lagrange multiplier with proportional, integral, and derivative control, achieving favorable learning dynamics. Feedback control defines cost terms for the learning agent, monitors the cost limits during training, and continuously adjusts the learning parameters to achieve stable performance. Our experiments demonstrate improved performance compared to scheduling policies without the PID Lagrangian methods. Experimental results illustrate the effectiveness of the Constraint Controlled Reinforcement Learning (CoCoRL) scheduler that simultaneously satisfies multiple objectives.
translated by 谷歌翻译
The exponential growth in demand for digital services drives massive datacenter energy consumption and negative environmental impacts. Promoting sustainable solutions to pressing energy and digital infrastructure challenges is crucial. Several hyperscale cloud providers have announced plans to power their datacenters using renewable energy. However, integrating renewables to power the datacenters is challenging because the power generation is intermittent, necessitating approaches to tackle power supply variability. Hand engineering domain-specific heuristics-based schedulers to meet specific objective functions in such complex dynamic green datacenter environments is time-consuming, expensive, and requires extensive tuning by domain experts. The green datacenters need smart systems and system software to employ multiple renewable energy sources (wind and solar) by intelligently adapting computing to renewable energy generation. We present RARE (Renewable energy Aware REsource management), a Deep Reinforcement Learning (DRL) job scheduler that automatically learns effective job scheduling policies while continually adapting to datacenters' complex dynamic environment. The resulting DRL scheduler performs better than heuristic scheduling policies with different workloads and adapts to the intermittent power supply from renewables. We demonstrate DRL scheduler system design parameters that, when tuned correctly, produce better performance. Finally, we demonstrate that the DRL scheduler can learn from and improve upon existing heuristic policies using Offline Learning.
translated by 谷歌翻译