模型反演(MI),其中对手滥用访问训练有素的机器学习(ML)模型试图推断有关其原始培训数据的敏感信息,引起了越来越多的研究关注。在MI期间,攻击(MUA)的训练模型通常被冻结并用于指导发电机的训练,例如生成的对抗网络(GAN),以重建该模型的原始训练数据的分布。这可能导致原始培训样本泄漏,如果成功,如果培训数据包含个人身份信息(PII),则数据集科目的隐私将面临风险。因此,对MI技术潜力的深入研究对于开发相应的防御技术至关重要。基于单一模型的培训数据的高质量重建是具有挑战性的。然而,现有的MI文献不会共同探索定位多个模型,这可以为对手提供额外的信息和多样化的观点。我们提出了集合反转技术,其通过培训由具有共享主题或实体的培训模型的集合(或设置)的生成器来培训产生的发电机的分布。与单个ML模型的MI相比,该技术导致产生具有数据集实体的具有可区分特征的所产生的样本的质量的显着改善。我们在没有任何数据集的情况下实现了高质量的结果,并显示了如何利用类似于假定训练数据的辅助数据集来提高结果。模型多样性在集合中的影响是彻底调查的,并且利用了额外的约束来鼓励重建样本的尖锐预测和高激活,从而导致训练图像的更准确地重建。
translated by 谷歌翻译
Collaborative machine learning and related techniques such as federated learning allow multiple participants, each with his own training dataset, to build a joint model by training locally and periodically exchanging model updates. We demonstrate that these updates leak unintended information about participants' training data and develop passive and active inference attacks to exploit this leakage. First, we show that an adversarial participant can infer the presence of exact data points-for example, specific locations-in others' training data (i.e., membership inference). Then, we show how this adversary can infer properties that hold only for a subset of the training data and are independent of the properties that the joint model aims to capture. For example, he can infer when a specific person first appears in the photos used to train a binary gender classifier. We evaluate our attacks on a variety of tasks, datasets, and learning configurations, analyze their limitations, and discuss possible defenses.
translated by 谷歌翻译
身份验证系统容易受到模型反演攻击的影响,在这种攻击中,对手能够近似目标机器学习模型的倒数。生物识别模型是这种攻击的主要候选者。这是因为反相生物特征模型允许攻击者产生逼真的生物识别输入,以使生物识别认证系统欺骗。进行成功模型反转攻击的主要限制之一是所需的训练数据量。在这项工作中,我们专注于虹膜和面部生物识别系统,并提出了一种新技术,可大大减少必要的训练数据量。通过利用多个模型的输出,我们能够使用1/10进行模型反演攻击,以艾哈迈德和富勒(IJCB 2020)的训练集大小(IJCB 2020)进行虹膜数据,而Mai等人的训练集大小为1/1000。 (模式分析和机器智能2019)的面部数据。我们将新的攻击技术表示为结构性随机,并损失对齐。我们的攻击是黑框,不需要了解目标神经网络的权重,只需要输出向量的维度和值。为了显示对齐损失的多功能性,我们将攻击框架应用于会员推理的任务(Shokri等,IEEE S&P 2017),对生物识别数据。对于IRIS,针对分类网络的会员推断攻击从52%提高到62%的准确性。
translated by 谷歌翻译
Deep Learning has recently become hugely popular in machine learning for its ability to solve end-to-end learning systems, in which the features and the classifiers are learned simultaneously, providing significant improvements in classification accuracy in the presence of highly-structured and large databases.Its success is due to a combination of recent algorithmic breakthroughs, increasingly powerful computers, and access to significant amounts of data.Researchers have also considered privacy implications of deep learning. Models are typically trained in a centralized manner with all the data being processed by the same training algorithm. If the data is a collection of users' private data, including habits, personal pictures, geographical positions, interests, and more, the centralized server will have access to sensitive information that could potentially be mishandled. To tackle this problem, collaborative deep learning models have recently been proposed where parties locally train their deep learning structures and only share a subset of the parameters in the attempt to keep their respective training sets private. Parameters can also be obfuscated via differential privacy (DP) to make information extraction even more challenging, as proposed by Shokri and Shmatikov at CCS'15.Unfortunately, we show that any privacy-preserving collaborative deep learning is susceptible to a powerful attack that we devise in this paper. In particular, we show that a distributed, federated, or decentralized deep learning approach is fundamentally broken and does not protect the training sets of honest participants. The attack we developed exploits the real-time nature of the learning process that allows the adversary to train a Generative Adversarial Network (GAN) that generates prototypical samples of the targeted training set that was meant to be private (the samples generated by the GAN are intended to come from the same distribution as the training data). Interestingly, we show that record-level differential privacy applied to the shared parameters of the model, as suggested in previous work, is ineffective (i.e., record-level DP is not designed to address our attack).
translated by 谷歌翻译
通过仅使用训练有素的分类器,模型内(MI)攻击可以恢复用于训练分类器的数据,从而导致培训数据的隐私泄漏。为了防止MI攻击,先前的工作利用单方面依赖优化策略,即,在培训分类器期间,最大程度地减少了输入(即功能)和输出(即标签)之间的依赖关系。但是,这样的最小化过程与最小化监督损失相冲突,该损失旨在最大程度地提高输入和输出之间的依赖关系,从而在模型鲁棒性针对MI攻击和模型实用程序上对分类任务进行明确的权衡。在本文中,我们旨在最大程度地减少潜在表示和输入之间的依赖性,同时最大化潜在表示和输出之间的依赖关系,称为双边依赖性优化(BIDO)策略。特别是,除了对深神经网络的常用损失(例如,跨渗透性)外,我们还将依赖性约束用作普遍适用的正常化程序,可以根据不同的任务将其实例化使用适当的依赖标准。为了验证我们策略的功效,我们通过使用两种不同的依赖性度量提出了两种BIDO的实施:具有约束协方差的Bido(Bido-Coco)(Bido-Coco)和Bido具有Hilbert-Schmidt独立标准(Bido-HSIC)。实验表明,比多(Bido防御MI攻击的道路。
translated by 谷歌翻译
We quantitatively investigate how machine learning models leak information about the individual data records on which they were trained. We focus on the basic membership inference attack: given a data record and black-box access to a model, determine if the record was in the model's training dataset. To perform membership inference against a target model, we make adversarial use of machine learning and train our own inference model to recognize differences in the target model's predictions on the inputs that it trained on versus the inputs that it did not train on.We empirically evaluate our inference techniques on classification models trained by commercial "machine learning as a service" providers such as Google and Amazon. Using realistic datasets and classification tasks, including a hospital discharge dataset whose membership is sensitive from the privacy perspective, we show that these models can be vulnerable to membership inference attacks. We then investigate the factors that influence this leakage and evaluate mitigation strategies.
translated by 谷歌翻译
虽然机器学习(ML)在过去十年中取得了巨大进展,但最近的研究表明,ML模型易受各种安全和隐私攻击的影响。到目前为止,这场领域的大部分攻击都专注于由分类器代表的歧视模型。同时,一点关注的是生成模型的安全性和隐私风险,例如生成的对抗性网络(GANS)。在本文中,我们提出了对GANS的第一组培训数据集财产推论攻击。具体地,对手旨在推断宏观级训练数据集属性,即用于训练目标GaN的样本的比例,用于某个属性。成功的财产推理攻击可以允许对手来获得目标GaN的训练数据集的额外知识,从而直接违反目标模型所有者的知识产权。此外,它可以用作公平审计员,以检查目标GAN是否接受偏置数据集进行培训。此外,财产推理可以用作其他高级攻击的构建块,例如隶属推断。我们提出了一般的攻击管道,可以根据两个攻击场景量身定制,包括全黑盒设置和部分黑盒设置。对于后者,我们介绍了一种新颖的优化框架来增加攻击效果。在五个房产推理任务上超过四个代表性GaN模型的广泛实验表明我们的攻击实现了强大的表现。此外,我们表明我们的攻击可用于增强隶属推断对GANS的绩效。
translated by 谷歌翻译
Model-based attacks can infer training data information from deep neural network models. These attacks heavily depend on the attacker's knowledge of the application domain, e.g., using it to determine the auxiliary data for model-inversion attacks. However, attackers may not know what the model is used for in practice. We propose a generative adversarial network (GAN) based method to explore likely or similar domains of a target model -- the model domain inference (MDI) attack. For a given target (classification) model, we assume that the attacker knows nothing but the input and output formats and can use the model to derive the prediction for any input in the desired form. Our basic idea is to use the target model to affect a GAN training process for a candidate domain's dataset that is easy to obtain. We find that the target model may distract the training procedure less if the domain is more similar to the target domain. We then measure the distraction level with the distance between GAN-generated datasets, which can be used to rank candidate domains for the target model. Our experiments show that the auxiliary dataset from an MDI top-ranked domain can effectively boost the result of model-inversion attacks.
translated by 谷歌翻译
从公共机器学习(ML)模型中泄漏数据是一个越来越重要的领域,因为ML的商业和政府应用可以利用多个数据源,可能包括用户和客户的敏感数据。我们对几个方面的当代进步进行了全面的调查,涵盖了非自愿数据泄漏,这对ML模型很自然,潜在的恶毒泄漏是由隐私攻击引起的,以及目前可用的防御机制。我们专注于推理时间泄漏,这是公开可用模型的最可能场景。我们首先在不同的数据,任务和模型体系结构的背景下讨论什么是泄漏。然后,我们提出了跨非自愿和恶意泄漏的分类法,可用的防御措施,然后进行当前可用的评估指标和应用。我们以杰出的挑战和开放性的问题结束,概述了一些有希望的未来研究方向。
translated by 谷歌翻译
窃取对受控信息的攻击,以及越来越多的信息泄漏事件,已成为近年来新兴网络安全威胁。由于蓬勃发展和部署先进的分析解决方案,新颖的窃取攻击利用机器学习(ML)算法来实现高成功率并导致大量损坏。检测和捍卫这种攻击是挑战性和紧迫的,因此政府,组织和个人应该非常重视基于ML的窃取攻击。本调查显示了这种新型攻击和相应对策的最新进展。以三类目标受控信息的视角审查了基于ML的窃取攻击,包括受控用户活动,受控ML模型相关信息和受控认证信息。最近的出版物总结了概括了总体攻击方法,并导出了基于ML的窃取攻击的限制和未来方向。此外,提出了从三个方面制定有效保护的对策 - 检测,破坏和隔离。
translated by 谷歌翻译
鉴于对机器学习模型的访问,可以进行对手重建模型的培训数据?这项工作从一个强大的知情对手的镜头研究了这个问题,他们知道除了一个之外的所有培训数据点。通过实例化混凝土攻击,我们表明重建此严格威胁模型中的剩余数据点是可行的。对于凸模型(例如Logistic回归),重建攻击很简单,可以以封闭形式导出。对于更常规的模型(例如神经网络),我们提出了一种基于训练的攻击策略,该攻击策略接收作为输入攻击的模型的权重,并产生目标数据点。我们展示了我们对MNIST和CIFAR-10训练的图像分类器的攻击的有效性,并系统地研究了标准机器学习管道的哪些因素影响重建成功。最后,我们从理论上调查了有多差异的隐私足以通过知情对手减轻重建攻击。我们的工作提供了有效的重建攻击,模型开发人员可以用于评估超出以前作品中考虑的一般设置中的个别点的记忆(例如,生成语言模型或访问培训梯度);它表明,标准模型具有存储足够信息的能力,以实现培训数据点的高保真重建;它表明,差异隐私可以成功减轻该参数制度中的攻击,其中公用事业劣化最小。
translated by 谷歌翻译
如今,深度学习模型的所有者和开发人员必须考虑其培训数据的严格隐私保护规则,通常是人群来源且保留敏感信息。如今,深入学习模型执行隐私保证的最广泛采用的方法依赖于实施差异隐私的优化技术。根据文献,这种方法已被证明是针对多种模型的隐私攻击的成功防御,但其缺点是对模型的性能的实质性降级。在这项工作中,我们比较了差异私有的随机梯度下降(DP-SGD)算法与使用正则化技术的标准优化实践的有效性。我们分析了生成模型的实用程序,培训性能以及成员推理和模型反转攻击对学习模型的有效性。最后,我们讨论了差异隐私的缺陷和限制,并从经验上证明了辍学和L2型规范的卓越保护特性。
translated by 谷歌翻译
了解神经网络记住培训数据是一个有趣的问题,具有实践和理论的含义。在本文中,我们表明,在某些情况下,实际上可以从训练有素的神经网络分类器的参数中重建训练数据的很大一部分。我们提出了一种新颖的重建方案,该方案源于有关基于梯度方法的训练神经网络中隐性偏见的最新理论结果。据我们所知,我们的结果是第一个表明从训练有素的神经网络分类器中重建大部分实际培训样本的结果是可以的。这对隐私有负面影响,因为它可以用作揭示敏感培训数据的攻击。我们在一些标准的计算机视觉数据集上演示了二进制MLP分类器的方法。
translated by 谷歌翻译
现代隐私法规授予公民被产品,服务和公司遗忘的权利。在机器学习(ML)应用程序的情况下,这不仅需要从存储档案中删除数据,而且还需要从ML模型中删除数据。由于对ML应用所需的监管依从性的需求越来越大,因此机器上的学习已成为一个新兴的研究问题。被遗忘的请求的权利是从已训练的ML模型中删除特定集或一类数据的形式的形式。实际考虑因素排除了模型的重新划分,从而减去已删除的数据。现有的少数研究使用了整个培训数据,或一部分培训数据,或者在培训期间存储的一些元数据以更新模型权重进行学习。但是,严格的监管合规性需要时间限制数据。因此,在许多情况下,即使是出于学习目的,也无法访问与培训过程或培训样本有关的数据。因此,我们提出一个问题:是否有可能使用零培训样本实现学习?在本文中,我们介绍了零击机的新问题,即适合极端但实用的方案,在该场景中,零原始数据样本可供使用。然后,我们根据(a)误差最小化最大化噪声和(b)门控知识传递的误差,提出了两种新的解决方案,以零发出的计算机学习。这些方法在保持保留数据上的模型疗效的同时,从模型中删除了忘记数据的信息。零射击方法可以很好地保护模型反转攻击和成员推理攻击。我们引入了新的评估度量,解散指数(AIN),以有效地测量未学习方法的质量。实验显示了在基准视觉数据集中深度学习模型中学习的有希望的结果。
translated by 谷歌翻译
机器学习(ML)模型已广泛应用于各种应用,包括图像分类,文本生成,音频识别和图形数据分析。然而,最近的研究表明,ML模型容易受到隶属推导攻击(MIS),其目的是推断数据记录是否用于训练目标模型。 ML模型上的MIA可以直接导致隐私违规行为。例如,通过确定已经用于训练与某种疾病相关的模型的临床记录,攻击者可以推断临床记录的所有者具有很大的机会。近年来,MIS已被证明对各种ML模型有效,例如,分类模型和生成模型。同时,已经提出了许多防御方法来减轻米西亚。虽然ML模型上的MIAS形成了一个新的新兴和快速增长的研究区,但还没有对这一主题进行系统的调查。在本文中,我们对会员推论和防御进行了第一个全面调查。我们根据其特征提供攻击和防御的分类管理,并讨论其优点和缺点。根据本次调查中确定的限制和差距,我们指出了几个未来的未来研究方向,以激发希望遵循该地区的研究人员。这项调查不仅是研究社区的参考,而且还为该研究领域之外的研究人员带来了清晰的照片。为了进一步促进研究人员,我们创建了一个在线资源存储库,并与未来的相关作品继续更新。感兴趣的读者可以在https://github.com/hongshenghu/membership-inference-machine-learning-literature找到存储库。
translated by 谷歌翻译
通过使用预训练模型的转移学习已成为机器学习社区的增长趋势。因此,在线发布了许多预培训模型,以促进进一步的研究。但是,它引起了人们对这些预训练模型是否会泄露其培训数据的隐私敏感信息的广泛担忧。因此,在这项工作中,我们的目标是回答以下问题:“我们可以有效地从这些预训练的模型中恢复私人信息吗?检索这种敏感信息的足够条件是什么?”我们首先探索不同的统计信息,这些信息可以将私人培训分布与其他分布区分开。根据我们的观察,我们提出了一个新颖的私人数据重建框架Secretgen,以有效地恢复私人信息。与以前可以恢复私人数据的方法与目标恢复实例的真实预测相比,SecretGen不需要此类先验知识,从而使其更加实用。我们在各种情况下对不同数据集进行了广泛的实验,以将Secretgen与其他基线进行比较,并提供系统的基准,以更好地了解不同的辅助信息和优化操作的影响。我们表明,如果没有关于真实班级预测的先验知识,SecretGen能够与利用此类先验知识的私人数据相比恢复具有相似性能的私人数据。如果给出了先验知识,SecretGen将显着优于基线方法。我们还提出了几个定量指标,以进一步量化预培训模型的隐私脆弱性,这将有助于对对隐私敏感应用程序的模型选择。我们的代码可在以下网址提供:https://github.com/ai-secure/secretgen。
translated by 谷歌翻译
Deep ensemble learning has been shown to improve accuracy by training multiple neural networks and averaging their outputs. Ensemble learning has also been suggested to defend against membership inference attacks that undermine privacy. In this paper, we empirically demonstrate a trade-off between these two goals, namely accuracy and privacy (in terms of membership inference attacks), in deep ensembles. Using a wide range of datasets and model architectures, we show that the effectiveness of membership inference attacks increases when ensembling improves accuracy. We analyze the impact of various factors in deep ensembles and demonstrate the root cause of the trade-off. Then, we evaluate common defenses against membership inference attacks based on regularization and differential privacy. We show that while these defenses can mitigate the effectiveness of membership inference attacks, they simultaneously degrade ensemble accuracy. We illustrate similar trade-off in more advanced and state-of-the-art ensembling techniques, such as snapshot ensembles and diversified ensemble networks. Finally, we propose a simple yet effective defense for deep ensembles to break the trade-off and, consequently, improve the accuracy and privacy, simultaneously.
translated by 谷歌翻译
机器学习的最新进展使其在不同领域的广泛应用程序,最令人兴奋的应用程序之一是自动驾驶汽车(AV),这鼓励了从感知到预测到计划的许多ML算法的开发。但是,培训AV通常需要从不同驾驶环境(例如城市)以及不同类型的个人信息(例如工作时间和路线)收集的大量培训数据。这种收集的大数据被视为以数据为中心的AI时代的ML新油,通常包含大量对隐私敏感的信息,这些信息很难删除甚至审核。尽管现有的隐私保护方法已经取得了某些理论和经验成功,但将它们应用于自动驾驶汽车等现实世界应用时仍存在差距。例如,当培训AVS时,不仅可以单独识别的信息揭示对隐私敏感的信息,还可以揭示人口级别的信息,例如城市内的道路建设以及AVS的专有商业秘密。因此,重新审视AV中隐私风险和相应保护方法的前沿以弥合这一差距至关重要。遵循这一目标,在这项工作中,我们为AVS中的隐私风险和保护方法提供了新的分类法,并将AV中的隐私分为三个层面:个人,人口和专有。我们明确列出了保护每个级别的隐私级别,总结这些挑战的现有解决方案,讨论课程和结论,并为研究人员和从业者提供潜在的未来方向和机会。我们认为,这项工作将有助于塑造AV中的隐私研究,并指导隐私保护技术设计。
translated by 谷歌翻译
模型反转攻击(MIAS)旨在创建合成图像,通过利用模型的学习知识来反映目标分类器的私人培训数据中的班级特征。先前的研究开发了生成的MIA,该MIA使用生成的对抗网络(GAN)作为针对特定目标模型的图像先验。这使得攻击时间和资源消耗,不灵活,并且容易受到数据集之间的分配变化的影响。为了克服这些缺点,我们提出了插头攻击,从而放宽了目标模型和图像之前的依赖性,并启用单个GAN来攻击广泛的目标,仅需要对攻击进行少量调整。此外,我们表明,即使在公开获得的预训练的gan和强烈的分配转变下,也可以实现强大的MIA,而先前的方法无法产生有意义的结果。我们的广泛评估证实了插头攻击的鲁棒性和灵活性,以及​​它们创建高质量图像的能力,揭示了敏感的类特征。
translated by 谷歌翻译
Neural networks are susceptible to data inference attacks such as the membership inference attack, the adversarial model inversion attack and the attribute inference attack, where the attacker could infer useful information such as the membership, the reconstruction or the sensitive attributes of a data sample from the confidence scores predicted by the target classifier. In this paper, we propose a method, namely PURIFIER, to defend against membership inference attacks. It transforms the confidence score vectors predicted by the target classifier and makes purified confidence scores indistinguishable in individual shape, statistical distribution and prediction label between members and non-members. The experimental results show that PURIFIER helps defend membership inference attacks with high effectiveness and efficiency, outperforming previous defense methods, and also incurs negligible utility loss. Besides, our further experiments show that PURIFIER is also effective in defending adversarial model inversion attacks and attribute inference attacks. For example, the inversion error is raised about 4+ times on the Facescrub530 classifier, and the attribute inference accuracy drops significantly when PURIFIER is deployed in our experiment.
translated by 谷歌翻译