准确诊断睡眠障碍对于临床评估和治疗至关重要。多元素摄影(PSG)长期以来用于检测各种睡眠障碍。在本研究中,心电图(ECG)和电磁影(EMG)已被用于识别呼吸和运动相关的睡眠障碍。除了使用SynchroSquezed小波变换(SSWT)开发迭代脉冲峰值检测算法之外,还通过提取EMG特征来执行生物信号处理,除了开发迭代脉冲峰值检测算法以获得来自ECG的心率和呼吸相关特征的可靠提取心率和呼吸相关的特征。深度学习框架旨在融入EMG和ECG功能。该框架已被用于对四组进行分类:健康受试者,患者阻塞性睡眠呼吸暂停(OSA),患者患者患者,患者患者和OSA和RLS患者。拟议的深度学习框架在我们制定的四类问题的主题中产生了平均准确性为72%,重量F1分数为0.57分。
translated by 谷歌翻译
阻塞性睡眠呼吸暂停(OSA)是今天最普遍的呼吸道疾病之一。由于睡眠期间的上气道沉降而完成或相对呼吸停止是OSA。它已经证实对Covid-19住院和死亡率的潜在影响,并且与严重Covid-19感染的主要合并性密切相关。未诊断为OSA也可能导致各种严重的身心副作用。为了评分OSA严重程度,根据“名为PolySomNography(PSG)的定义协议和标准来执行夜间睡眠监视。这种方法是耗时,昂贵,需要专业的睡眠技师。欢迎自动家庭的OSA检测OSA。它是一种快速有效的方法,用于将OSA嫌疑人申请睡眠诊所进行进一步监测。在线OSA检测也可以是OSA治疗/辅助装置的闭环自动控制的一部分。在本文中,在三个不同数据库的155个科目上引入并测试了几种用于在线OSA检测的解决方案。最好的组合解决方案使用相互信息(MI)分析来选择退出ECG和基于SPO2的特征。采用了几种监督和无监督机器学习方法来检测不良发作。为了实现最佳性能,使用四种不同三元组合方法中最成功的分类器。所提出的配置利用有限使用生物信号,具有在线工作方案,并在所有采用的数据库中表现出均匀和可接受的性能(超过85%)。在以前的已发布的方法中,尚未聚集在一起。
translated by 谷歌翻译
睡眠呼吸暂停(SA)是一种睡眠障碍,其特征是打s和慢性睡眠,这可能导致严重的疾病,例如高血压,心力衰竭和心肌病(心脏肌肉组织的增大)。心电图(ECG)在识别SA中起着至关重要的作用,因为它可能显示出异常的心脏活性。对基于ECG的SA检测的最新研究集中在功能工程技术上,这些技术从多铅ECG信号中提取特定特征,并将其用作分类模型输入。在这项研究中,提出了一种基于S峰检测的新型特征提取方法,以增强使用单铅ECG对相邻SA段的检测。特别是,使用单个铅(V2)收集的ECG特征用于识别SA发作。在提取的功能上,对CNN模型进行了训练以检测SA。实验结果表明,所提出的方法从单铅ECG数据中检测到SA比现有的最新方法更准确,具有91.13%的分类精度,敏感性为92.58%和88.75%的特异性。此外,与S峰相关的特征的进一步使用可以提高分类准确性0.85%。我们的发现表明,提出的机器学习系统有可能成为检测SA发作的有效方法。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
上肢运动分类将输入信号映射到目标活动,是控制康复机器人技术的关键领域之一。分类器接受了康复系统的培训,以理解上肢无法正常工作的患者的欲望。肌电图(EMG)信号和脑电图(EEG)信号广泛用于上肢运动分类。通过分析实时脑电图和EMG信号的分类结果,系统可以理解用户的意图,并预测人们希望执行的事件。因此,它将为用户提供外部帮助,以协助一个人进行活动。但是,由于嘈杂的环境,并非所有用户都处理有效的脑电图和EMG信号。实时数据收集过程中的噪声污染了数据的有效性。此外,并非所有患者由于肌肉损伤和神经肌肉疾病而处理强大的EMG信号。为了解决这些问题,我们想提出一种新颖的决策级多传感器融合技术。简而言之,该系统将将EEG信号与EMG信号集成,从两个来源检索有效的信息以了解和预测用户的需求,从而提供帮助。通过对包含同时记录的脑电图和EMG信号的公开途径数据集进行测试,我们设法结论了新型系统的可行性和有效性。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
在本文中,我们通过整合具有离散的傅立叶变换(DFT)的复杂值和实值卷积神经网络(CNN)来提出一个新的EEG信号分类框架。所提出的神经网络架构由一个复杂值的卷积层,两个实值卷积层和三个完全连接的层组成。我们的方法可以有效利用DFT中包含的相信息。我们使用两个模拟的EEG信号和一个基准数据集验证我们的方法,并将其与两个广泛使用的框架进行比较。与对基准数据集进行分类的现有方法相比,我们的方法大大减少了所使用的参数的数量并提高了准确性,并显着提高了对模拟的EEG信号进行分类的性能。
translated by 谷歌翻译
近年来,深度学习显示了广泛区域的潜力和效率,包括计算机视觉,图像和信号处理。然而,由于缺乏算法决策和结果的解释性,用户应用程序仍然存在转化挑战。这个黑匣子问题对于高风险应用程序(例如与医疗相关的决策制定)尤其有问题。当前的研究目标是设计一个可解释的深度学习系统,用于对脑电图的时间序列分类(EEG)进行睡眠阶段评分,以此作为设计透明系统的一步。我们已经开发了一个可解释的深神经网络,该网络包括基于内核的层,该层是基于人类专家在视觉分析记录的视觉分析中用于睡眠评分的一组原理。将基于内核的卷积层定义并用作系统的第一层,并可用于用户解释。训练有素的系统及其结果从脑电图信号的微观结构(例如训练的内核)以及每个内核对检测到的阶段的效果,宏观结构(例如阶段之间的过渡)中解释了四个级别。拟议的系统表现出比先前的研究更大的性能,而解释的结果表明,该系统学习了与专家知识一致的信息。
translated by 谷歌翻译
胎儿心电图(FECG)首先在20世纪初从母体腹表面记录。在过去的五十年中,最先进的电子技术和信号处理算法已被用于将非侵入性胎儿心电图转化为可靠的胎儿心脏监测技术。在本章中,已经对来自非侵入性母亲腹部录像进行了建模,提取和分析的主要信号处理技术,并详细介绍了来自非侵入性母亲腹部录像的型号的建模,提取和分析。本章的主要主题包括:1)FECG的电生理学从信号处理视点,2)母体体积传导介质的数学模型和从体表的FECG的波形模型,3)信号采集要求,4)基于模型的FECG噪声和干扰取消的技术,包括自适应滤波器和半盲源分离技术,以及5)胎儿运动跟踪和在线FECG提取的最近算法的进步。
translated by 谷歌翻译
在初步诊断和分析心脏缺陷,ECG信号发挥着重要作用。本文介绍了使用噪声滤波,独特的心电图特征和基于机器学习的分类器模型预测心室性心动过速心律失常的模型。在信号特征提取之前,我们可以拒绝并使信号脱落以消除正确检测特征的噪声。在提取必要的特征之后,测量与这些特征相关的必要参数。使用这些参数,我们使用的是一种高效的多键级分类器模型,使用机器学习方法可以有效地分类不同类型的心室性心动过速心律失常。我们的结果表明,基于逻辑回归和决策树的模型是用于检测心室性心动过速的最有效的机器学习模型。为了诊断心脏病并为患者寻找护理,需要早期,可靠的不同类型心律失常的诊断。通过实施我们提出的方法,这项工作涉及减少与心室性心动过速有关的关键信号的错误分类问题的问题。实验结果表明了我们提出的算法的令人满意的增强,并表现出高度的恢复力。通过这种帮助,医生可以提前评估这种患者的这种心律失常,并在适当的时间作出正确的决定。
translated by 谷歌翻译
The promise of Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions. However, a major challenge is frequent missing data. Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications, and a lack of available datasets has stymied progress. We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks. Our baseline models include a novel transformer-based architecture designed to exploit the structure of pulsative signals. We hope that PulseImpute will enable the ML community to tackle this significant and challenging task.
translated by 谷歌翻译
心律不齐的右心肌病(ARVC)是一种遗传性心肌疾病,在患者生命的第二和十年之间出现,导致35岁之前的心脏突然死亡的20%。在心电图(ECG)上,在降低过早心血管死亡率中可能具有至关重要的作用。在我们的分析中,我们首先概述了基于纸张的ECG信号的数字化过程,该空间过滤器旨在消除数据集图像中与ECG波形无关的黑暗区域,从而产生不良的噪声。接下来,我们建议使用低 - 复杂性卷积神经网络来检测心律失常心脏病,迄今为止尚未通过使用深度学习方法来研究,迄今为止的使用,达到高分类准确性,即99.98%的训练和98.6%测试准确性,与其他心律失常异常相反,在疾病上,其主要鉴定标准是ECG形态的无限千伏变化。最后,通过进行光谱分析,我们研究了与ARVC患者相对应的正常ECG和ECG之间频率领域的显着区别。在我们遇到统计学上显着分化的18个频率中,有16个中,正常的心电图的特征是与异常相比更大的归一化振幅。本文进行的总体研究强调了将数学方法整合到各种疾病的检查和有效诊断中的重要性,旨在为他们的成功治疗做出重大贡献。
translated by 谷歌翻译
心血管疾病是世界各地最常见的死亡原因。为了检测和治疗心脏相关的疾病,需要连续血压(BP)监测以及许多其他参数。为此目的开发了几种侵入性和非侵入性方法。用于持续监测BP的医院中使用的大多数现有方法是侵入性的。相反,基于袖带的BP监测方法,可以预测收缩压(SBP)和舒张压(DBP),不能用于连续监测。几项研究试图从非侵​​入性可收集信号(例如光学肌谱(PPG)和心电图(ECG))预测BP,其可用于连续监测。在这项研究中,我们探讨了自动化器在PPG和ECG信号中预测BP的适用性。在12,000岁的MIMIC-II数据集中进行了调查,发现了一个非常浅的一维AutoEncoder可以提取相关功能,以预测与最先进的SBP和DBP在非常大的数据集上的性能。从模拟-II数据集的一部分的独立测试分别为SBP和DBP提供了2.333和0.713的MAE。在40个主题的外部数据集上,模型在MIMIC-II数据集上培训,分别为SBP和DBP提供2.728和1.166的MAE。对于这种情况来说,结果达到了英国高血压协会(BHS)A级并超越了目前文学的研究。
translated by 谷歌翻译
在过去的几年中,自动睡眠评分的研究主要集中在开发日益复杂的深度学习体系结构上。但是,最近,这些方法仅实现了边际改进,通常以需要更多数据和更昂贵的培训程序为代价。尽管所有这些努力及其令人满意的表现,但在临床背景下,自动睡眠期临时解决方案并未被广泛采用。我们认为,由于很难训练,部署和繁殖,大多数对睡眠评分的深度学习解决方案在现实世界中的适用性受到限制。此外,这些解决方案缺乏可解释性和透明度,这通常是提高采用率的关键。在这项工作中,我们使用经典的机器学习来重新审视睡眠阶段分类的问题。结果表明,通过传统的机器学习管道可以实现最新的性能,该管道包括预处理,功能提取和简单的机器学习模型。特别是,我们分析了线性模型和非线性(梯度提升)模型的性能。我们的方法超过了两个公共数据集上的最新方法(使用相同的数据):Sleep--EDF SC-20(MF1 0.810)和Sleep-eDF ST(MF1 0.795),同时在Sleep-eDF上取得了竞争成果SC-78(MF1 0.775)和质量SS3(MF1 0.817)。我们表明,对于睡眠阶段评分任务,工程特征向量的表现力与深度学习模型的内部学表现相当。该观察结果为临床采用打开了大门,因为代表性功能向量允许利用传统机器学习模型的可解释性和成功记录。
translated by 谷歌翻译
对心电图(ECG)信号的调查是诊断心脏病的必要方式,因为ECG过程是非侵入性的,易于使用。这项工作介绍了由几个阶段组成的Supraventriculary的心律失常预测模型,包括噪声过滤,唯一的ECG特征集合,以及自动学习分类模型,以分类不同类型,具体取决于它们的严重程度。我们在执行提取之前,我们去趋势和解除噪声降低噪声以更好地确定功能的信号。之后,我们呈现一个R峰值检测方法和Q-S检测方法作为必要的特征提取的一部分。计算对应于这些功能的下一个参数。使用这些特征,我们已经开发了一种基于机器学习的分类模型,可以成功地分类不同类型的Supraventricular contcardia。我们的研究结果表明,基于决策树的模型是Supraventriculary心动过速心律失常最有效的机器学习模型。在所有机器学习模型中,该模型最有效地降低了Supranculary心动过速的关键信号错误分类。实验结果表明,令人满意的改进,并展示了提出的方法的优越效率,精度为97%。
translated by 谷歌翻译
心血管疾病(CVD)是全球死亡的第一大原因。尽管有越来越多的证据表明心房颤动(AF)与各种CVD有着密切的关联,但这种心律不齐通常是使用心电图(ECG)诊断的,这是一种无风险,无侵入性和具有成本效益的工具。在任何威胁生命的疾病/疾病发展之前,不断和远程监视受试者的心电图信息迅速诊断和及时对AF进行预处理的潜力。最终,可以降低CVD相关的死亡率。在此手稿中,展示了体现可穿戴心电图设备,移动应用程序和后端服务器的个性化医疗系统的设计和实施。该系统不断监视用户的心电图信息,以提供个性化的健康警告/反馈。用户能够通过该系统与他们的配对健康顾问进行远程诊断,干预措施等。已经评估了实施的可穿戴ECG设备,并显示出极好的一致性(CVRMS = 5.5%),可接受的一致性(CVRMS = CVRMS = CVRMS = 12.1%),可忽略不计的RR间隙错误(<1.4%)。为了提高可穿戴设备的电池寿命,提出了使用ECG信号的准周期特征来实现压缩的有损压缩模式。与公认的架构相比,它在压缩效率和失真方面优于其他模式,并在MIT-BIH数据库中以ECG信号的某个PRD或RMSE达到了至少2倍的Cr。为了在拟议系统中实现自动化AF诊断/筛查,开发了基于重新系统的AF检测器。对于2017年Physionet CINC挑战的ECG记录,该AF探测器获得了平均测试F1 = 85.10%和最佳测试F1 = 87.31%,表现优于最先进。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
心电图(ECG)是用于监测心脏电信号和评估其功能的最常见和常规诊断工具。人心脏可能患有多种疾病,包括心律不齐。心律不齐是一种不规则的心律,在严重的情况下会导致心脏中风,可以通过ECG记录诊断。由于早期发现心律不齐非常重要,因此在过去的几十年中,计算机化和自动化的分类以及这些异常心脏信号的识别引起了很多关注。方法:本文引入了一种轻度的深度学习方法,以高精度检测8种不同的心律不齐和正常节奏。为了利用深度学习方法,将重新采样和基线徘徊清除技术应用于ECG信号。在这项研究中,将500个样本ECG段用作模型输入。节奏分类是通过11层网络以端到端方式完成的,而无需手工制作的手动功能提取。结果:为了评估提出的技术,从两个Physionet数据库,MIT-BIH心律失常数据库和长期AF数据库中选择了ECG信号。基于卷积神经网络(CNN)和长期记忆(LSTM)的组合,提出的深度学习框架比大多数最先进的方法显示出令人鼓舞的结果。所提出的方法达到98.24%的平均诊断准确性。结论:成功开发和测试了使用多种心电图信号的心律失常分类的训练有素的模型。意义:由于本工作使用具有高诊断精度的光分类技术与其他值得注意的方法相比,因此可以在Holter Monitor设备中成功实施以进行心律失常检测。
translated by 谷歌翻译
目的:通过可穿戴传感器持续监测生物信号,在医疗和健康领域迅速扩展。在静止时,自动检测重要参数通常是准确的。然而,在诸如高强度运动的条件下,信号发生突然的生理变化,损害标准算法的鲁棒性。方法:我们的方法称为Bayeslope,是基于无监督的学习,贝叶斯滤波和非线性归一化,并根据ECG中的预期位置来增强和正确地检测R峰值。此外,随着贝叶克洛斯的计算沉重并且可以快速排出设备电池,我们提出了一种在线设计,可使其突然生理变化以及对现代嵌入式平台的异构资源的复杂性。该方法将Bayeslope与轻量级算法相结合,在具有不同能力的核心中执行,以减少能量消耗,同时保持精度。结果:贝森普洛普在激进的骑自行车运动中实现了99.3%的F1得分为99.3%。此外,在线自适应过程在五种不同的运动强度上实现了99%的F1得分,总能耗为1.55±0.54〜MJ。结论:我们提出了一种高度准确和稳健的方法,以及在现代超低功耗嵌入式平台中的完整节能实现,以提高攻击条件下的R峰值检测,例如在高强度运动期间。重要意义:实验表明,贝叶普洛斯在F1分数中优于8.4%的最先进的算法,而我们的在线自适应方法可以在现代异构可穿戴平台上达到高达38.7%的节能。
translated by 谷歌翻译