The promise of Mobile Health (mHealth) is the ability to use wearable sensors to monitor participant physiology at high frequencies during daily life to enable temporally-precise health interventions. However, a major challenge is frequent missing data. Despite a rich imputation literature, existing techniques are ineffective for the pulsative signals which comprise many mHealth applications, and a lack of available datasets has stymied progress. We address this gap with PulseImpute, the first large-scale pulsative signal imputation challenge which includes realistic mHealth missingness models, an extensive set of baselines, and clinically-relevant downstream tasks. Our baseline models include a novel transformer-based architecture designed to exploit the structure of pulsative signals. We hope that PulseImpute will enable the ML community to tackle this significant and challenging task.
translated by 谷歌翻译
Electrocardiography (ECG), an electrical measurement which captures cardiac activities, is the gold standard for diagnosing cardiovascular disease (CVD). However, ECG is infeasible for continuous cardiac monitoring due to its requirement for user participation. By contrast, photoplethysmography (PPG) provides easy-to-collect data, but its limited accuracy constrains its clinical usage. To combine the advantages of both signals, recent studies incorporate various deep learning techniques for the reconstruction of PPG signals to ECG; however, the lack of contextual information as well as the limited abilities to denoise biomedical signals ultimately constrain model performance. In this research, we propose Performer, a novel Transformer-based architecture that reconstructs ECG from PPG and combines the PPG and reconstructed ECG as multiple modalities for CVD detection. This method is the first time that Transformer sequence-to-sequence translation has been performed on biomedical waveform reconstruction, combining the advantages of both PPG and ECG. We also create Shifted Patch-based Attention (SPA), an effective method to encode/decode the biomedical waveforms. Through fetching the various sequence lengths and capturing cross-patch connections, SPA maximizes the signal processing for both local features and global contextual representations. The proposed architecture generates a state-of-the-art performance of 0.29 RMSE for the reconstruction of PPG to ECG on the BIDMC database, surpassing prior studies. We also evaluated this model on the MIMIC-III dataset, achieving a 95.9% accuracy in CVD detection, and on the PPG-BP dataset, achieving 75.9% accuracy in related CVD diabetes detection, indicating its generalizability. As a proof of concept, an earring wearable named PEARL (prototype), was designed to scale up the point-of-care (POC) healthcare system.
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
缺失值的插补代表了许多现实世界数据分析管道的重要障碍。在这里,我们专注于时间序列数据,并提出SSSD,这是一个依赖两种新兴技术的插图模型,(条件)扩散模型是最先进的生成模型,结构化状态空间模型作为内部模型体系结构,是特别适合捕获时间序列数据中的长期依赖性。我们证明,在广泛的数据集和不同的丢失方案(包括具有挑战性的停电失误的情况)上,SSSD匹配甚至超过了最先进的概率插补和预测性能,在这些情况下,先前的方法未能提供有意义的结果。
translated by 谷歌翻译
就起搏器提供的信号(即,神心电图电测(EGM))和信号医生使用(即12-铅心电图(ECG))而言,存在差距以诊断出异常节律。因此,前者,即使远程传输,医生也不足以提供精确的诊断,更不用说更及时干预。为了缩短这种差距,并对即时响应不规则和不频繁的心室节律的即时反应进行启发式步骤,我们提出了一个新的框架被称为RT-RCG,以自动搜索(1)高效的深神经网络(DNN)结构和然后(2)相应的加速器,能够实现来自EGM信号的ECG信号的实时和高质量的重建。具体地,RT-RCG提出了一种针对EGM信号的ECG重建量身定制的新的DNN搜索空间,并结合了可分辨率的加速搜索(DAS)发动机,以有效地导航大而离散的加速器设计空间以产生优化的加速器。各种环境下的广泛实验和消融研究一致地验证了RT-RCG的有效性。据我们所知,RT-RCG是第一个利用神经结构搜索(NAS)来同时解决重建效能和效率的效率。
translated by 谷歌翻译
心血管疾病(CVD)是全球死亡的第一大原因。尽管有越来越多的证据表明心房颤动(AF)与各种CVD有着密切的关联,但这种心律不齐通常是使用心电图(ECG)诊断的,这是一种无风险,无侵入性和具有成本效益的工具。在任何威胁生命的疾病/疾病发展之前,不断和远程监视受试者的心电图信息迅速诊断和及时对AF进行预处理的潜力。最终,可以降低CVD相关的死亡率。在此手稿中,展示了体现可穿戴心电图设备,移动应用程序和后端服务器的个性化医疗系统的设计和实施。该系统不断监视用户的心电图信息,以提供个性化的健康警告/反馈。用户能够通过该系统与他们的配对健康顾问进行远程诊断,干预措施等。已经评估了实施的可穿戴ECG设备,并显示出极好的一致性(CVRMS = 5.5%),可接受的一致性(CVRMS = CVRMS = CVRMS = 12.1%),可忽略不计的RR间隙错误(<1.4%)。为了提高可穿戴设备的电池寿命,提出了使用ECG信号的准周期特征来实现压缩的有损压缩模式。与公认的架构相比,它在压缩效率和失真方面优于其他模式,并在MIT-BIH数据库中以ECG信号的某个PRD或RMSE达到了至少2倍的Cr。为了在拟议系统中实现自动化AF诊断/筛查,开发了基于重新系统的AF检测器。对于2017年Physionet CINC挑战的ECG记录,该AF探测器获得了平均测试F1 = 85.10%和最佳测试F1 = 87.31%,表现优于最先进。
translated by 谷歌翻译
神经科学家和神经工具长期以来一直依赖多电极神经记录来研究大脑。但是,在典型的实验中,许多因素损坏了来自单个电极的神经记录,包括电噪声,运动伪像和制造错误。当前,普遍的做法是丢弃这些损坏的录音,减少已经有限的数据,难以收集。为了应对这一挑战,我们提出了深层神经插补(DNI),这是一个从跨空间位置,天和参与者中收集的数据中学习的框架,以从电极中恢复缺失值。我们通过线性最近的邻居方法和两个深层生成自动编码器探索我们的框架,证明了DNI的灵活性。一位深度自动编码器单独建模参与者,而另一个则扩展了该体系结构以共同建模。我们评估了12名用多电极内电图阵列植入的人类参与者的模型;参与者没有明确的任务,并且在数百个记录小时内自然行为。我们表明,DNI不仅恢复了时间序列,还可以恢复频率内容,并通过在科学相关的下游神经解码任务上恢复出色的性能来进一步确立DNI的实际价值。
translated by 谷歌翻译
准确诊断睡眠障碍对于临床评估和治疗至关重要。多元素摄影(PSG)长期以来用于检测各种睡眠障碍。在本研究中,心电图(ECG)和电磁影(EMG)已被用于识别呼吸和运动相关的睡眠障碍。除了使用SynchroSquezed小波变换(SSWT)开发迭代脉冲峰值检测算法之外,还通过提取EMG特征来执行生物信号处理,除了开发迭代脉冲峰值检测算法以获得来自ECG的心率和呼吸相关特征的可靠提取心率和呼吸相关的特征。深度学习框架旨在融入EMG和ECG功能。该框架已被用于对四组进行分类:健康受试者,患者阻塞性睡眠呼吸暂停(OSA),患者患者患者,患者患者和OSA和RLS患者。拟议的深度学习框架在我们制定的四类问题的主题中产生了平均准确性为72%,重量F1分数为0.57分。
translated by 谷歌翻译
由于照顾不断增长的老年人口的医疗和财务需求,对跌倒的及时可靠发现是一个大型且快速增长的研究领域。在过去的20年中,高质量硬件(高质量传感器和AI微芯片)和软件(机器学习算法)技术的可用性通过为开发人员提供开发此类系统的功能,从而成为这项研究的催化剂。这项研究开发了多个应用组件,以研究秋季检测系统的发展挑战和选择,并为未来的研究提供材料。使用此方法开发的智能应用程序通过秋季检测模型实验和模型移动部署的结果验证。总体上表现最好的模型是标准化的RESNET152,并带有2S窗口尺寸的调整数据集,可实现92.8%的AUC,7.28%的灵敏度和98.33%的特异性。鉴于这些结果很明显,加速度计和心电图传感器对秋季检测有益,并允许跌倒和其他活动之间的歧视。由于所得数据集中确定的弱点,这项研究为改进的空间留下了很大的改进空间。这些改进包括在跌落的临界阶段使用标签协议,增加数据集样品的数量,改善测试主题表示形式,并通过频域预处理进行实验。
translated by 谷歌翻译
智能手表或健身追踪器由于负担得起和纵向监测功能而获得了潜在的健康跟踪设备的广泛欢迎。为了进一步扩大其健康跟踪能力,近年来,研究人员开始研究在实时利用光摄影学(PPG)数据中进行心房颤动(AF)检测的可能性,这是一种几乎所有智能手表中广泛使用的廉价传感器。从PPG信号检测AF检测的重大挑战来自智能手表PPG信号中的固有噪声。在本文中,我们提出了一种基于深度学习的新方法,即利用贝叶斯深度学习的力量来准确地从嘈杂的PPG信号中推断出AF风险,同时提供了预测的不确定性估计。在两个公开可用数据集上进行的广泛实验表明,我们提出的方法贝尼斯甲的表现优于现有的最新方法。此外,贝内斯比特(Bayesbeat)的参数比最先进的基线方法要少40-200倍,使其适合在资源约束可穿戴设备中部署。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
在时间序列上进行预训练会带来独特的挑战,这是由于预训练和目标域之间的潜在不匹配,例如时间动力学的变化,快速变化的趋势以及远距离循环效应和短期循环效应,这会导致下游差的差表现。尽管域适应方法可以减轻这些偏移,但大多数方法都需要直接从目标域中进行示例,从而使其次优于预训练。为了应对这一挑战,方法需要适应具有不同时间动力学的目标域,并且能够在预训练期间看到任何目标示例。相对于其他方式,在时间序列中,我们期望同一示例的基于时间和频率的表示形式靠近时间频率。为此,我们认为时间频一致性(TF-C)(将特定示例的基于时间的社区嵌入到其基于频率的邻居和后背)是可取的。由TF-C激发,我们定义了一个可分解的预训练模型,其中自我监督信号由时间和频率分量之间的距离提供,每个信号通过对比度估计单独训练。我们在八个数据集上评估了新方法,包括电诊断测试,人类活动识别,机械故障检测和身体状态监测。针对八种最先进方法的实验表明,在一对一的设置中,TF-C平均比基准平均超过15.4%(F1分数)(例如,在EMG数据上对EEG预测的模型进行微调)和在具有挑战性的一对一环境中,最多可达8.4%(F1得分),这反映了现实世界应用中出现的场景广度。源代码和数据集可在https://anonymon.4open.science/r/tfc-pretraining-6b07上找到。
translated by 谷歌翻译
近年来,基于生理信号的认证表现出伟大的承诺,因为其固有的对抗伪造的鲁棒性。心电图(ECG)信号是最广泛研究的生物关像,也在这方面获得了最高的关注。已经证明,许多研究通过分析来自不同人的ECG信号,可以识别它们,可接受的准确性。在这项工作中,我们展示了EDITH,EDITH是一种基于深入的ECG生物识别认证系统的框架。此外,我们假设并证明暹罗架构可以在典型的距离指标上使用,以提高性能。我们使用4个常用的数据集进行了评估了伊迪丝,并使用少量节拍表现优于先前的工作。 Edith使用仅单一的心跳(精度为96-99.75%)进行竞争性,并且可以通过融合多个节拍(从3到6个节拍的100%精度)进一步提高。此外,所提出的暹罗架构管理以将身份验证等错误率(eer)降低至1.29%。具有现实世界实验数据的Edith的有限案例研究还表明其作为实际认证系统的潜力。
translated by 谷歌翻译
胎儿心电图(FECG)首先在20世纪初从母体腹表面记录。在过去的五十年中,最先进的电子技术和信号处理算法已被用于将非侵入性胎儿心电图转化为可靠的胎儿心脏监测技术。在本章中,已经对来自非侵入性母亲腹部录像进行了建模,提取和分析的主要信号处理技术,并详细介绍了来自非侵入性母亲腹部录像的型号的建模,提取和分析。本章的主要主题包括:1)FECG的电生理学从信号处理视点,2)母体体积传导介质的数学模型和从体表的FECG的波形模型,3)信号采集要求,4)基于模型的FECG噪声和干扰取消的技术,包括自适应滤波器和半盲源分离技术,以及5)胎儿运动跟踪和在线FECG提取的最近算法的进步。
translated by 谷歌翻译
呼吸率(RR)是重要的生物标志物,因为RR变化可以反映严重的医学事件,例如心脏病,肺部疾病和睡眠障碍。但是,不幸的是,标准手动RR计数容易出现人为错误,不能连续执行。这项研究提出了一种连续估计RR,RRWAVENET的方法。该方法是一种紧凑的端到端深度学习模型,不需要特征工程,可以将低成本的原始光摄影学(PPG)用作输入信号。对RRWAVENET进行了独立于主题的测试,并与三个数据集(BIDMC,Capnobase和Wesad)中的基线进行了比较,并使用三个窗口尺寸(16、32和64秒)进行了比较。 RRWAVENET优于最佳窗口大小为1.66 \ pm 1.01、1.59 \ pm 1.08的最佳绝对错误的最新方法,每个数据集每分钟每分钟呼吸0.96。在远程监视设置(例如在WESAD数据集中),我们将传输学习应用于其他两个ICU数据集,将MAE降低到1.52 \ pm每分钟0.50呼吸,显示此模型可以准确且实用的RR对负担得起的可穿戴设备进行准确估算。我们的研究表明,在远程医疗和家里,远程RR监测的可行性。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
睡眠呼吸暂停(SA)是一种睡眠障碍,其特征是打s和慢性睡眠,这可能导致严重的疾病,例如高血压,心力衰竭和心肌病(心脏肌肉组织的增大)。心电图(ECG)在识别SA中起着至关重要的作用,因为它可能显示出异常的心脏活性。对基于ECG的SA检测的最新研究集中在功能工程技术上,这些技术从多铅ECG信号中提取特定特征,并将其用作分类模型输入。在这项研究中,提出了一种基于S峰检测的新型特征提取方法,以增强使用单铅ECG对相邻SA段的检测。特别是,使用单个铅(V2)收集的ECG特征用于识别SA发作。在提取的功能上,对CNN模型进行了训练以检测SA。实验结果表明,所提出的方法从单铅ECG数据中检测到SA比现有的最新方法更准确,具有91.13%的分类精度,敏感性为92.58%和88.75%的特异性。此外,与S峰相关的特征的进一步使用可以提高分类准确性0.85%。我们的发现表明,提出的机器学习系统有可能成为检测SA发作的有效方法。
translated by 谷歌翻译
睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译