细分已成为计算机视觉和自然语言处理的基本领域,该领域将标签分配给每个像素/功能,以从图像/文本中提取感兴趣的区域。为了评估分割的性能,骰子和IOU指标用于衡量地面真理与预测分割之间的重叠程度。在本文中,我们建立了关于骰子/IOU指标的分割理论基础,包括贝叶斯规则和骰子/iou校准,类似于分类 - 校准或分类中的Fisher一致性。我们证明,与骰子/IOU指标相对于大多数操作损失的现有基于阈值的框架不一致,因此可能导致次优的解决方案。为了解决这一陷阱,我们提出了一个基于排名的一致框架,即rankdice/rankiou,灵感来自贝叶斯细分规则的插件规则。开发了三种具有GPU并行执行的数值算法,以在大规模和高维分段中实现所提出的框架。我们研究所提出的框架的统计特性。我们表明它是骰子 - 校准的,它的多余风险范围和收敛速度也提供了。在各种模拟示例,精细的城市景观和带有最先进的深度学习体系结构的Pascal VOC数据集中,证明了Rankdice/Mrankdice的数值有效性。
translated by 谷歌翻译
Jaccard索引,也称为交叉联盟(iou),是图像语义分段中最关键的评估度量之一。然而,由于学习目的既不可分解也不是可分解的,则iou得分的直接优化是非常困难的。虽然已经提出了一些算法来优化其代理,但没有提供泛化能力的保证。在本文中,我们提出了一种边缘校准方法,可以直接用作学习目标,在数据分布上改善IOO的推广,通过刚性下限为基础。本方案理论上,根据IOU分数来确保更好的分割性能。我们评估了在七个图像数据集中所提出的边缘校准方法的有效性,显示使用深度分割模型的其他学习目标的IOU分数大量改进。
translated by 谷歌翻译
The Jaccard index, also referred to as the intersectionover-union score, is commonly employed in the evaluation of image segmentation results given its perceptual qualities, scale invariance -which lends appropriate relevance to small objects, and appropriate counting of false negatives, in comparison to per-pixel losses. We present a method for direct optimization of the mean intersection-over-union loss in neural networks, in the context of semantic image segmentation, based on the convex Lovász extension of submodular losses. The loss is shown to perform better with respect to the Jaccard index measure than the traditionally used cross-entropy loss. We show quantitative and qualitative differences between optimizing the Jaccard index per image versus optimizing the Jaccard index taken over an entire dataset. We evaluate the impact of our method in a semantic segmentation pipeline and show substantially improved intersection-over-union segmentation scores on the Pascal VOC and Cityscapes datasets using state-of-the-art deep learning segmentation architectures.
translated by 谷歌翻译
我们介绍了正规化的弗兰克 - 沃尔夫(Frank-Wolfe),这是一种通用有效的算法,用于推断和学习密集的有条件随机场(CRF)。该算法使用Vanilla Frank-Wolfe优化了CRF推理问题的不连续放松,并具有近似更新,这相当于最大程度地减少正则能量函数。我们提出的方法是对现有算法(例如平均字段或凹形通用程序)的概括。这种观点不仅提供了对这些算法的统一分析,而且还允许一种简单的方法来探索不同的变体,这些变体可能会产生更好的性能。我们在标准语义分割数据集的经验结果中说明了这一点,在该数据集中,我们正规化的Frank-Wolfe优于均值均值推断的几个实例化,无论是独立的组件还是作为神经网络中的端到端可训练层。我们还表明,密集的CRF与我们的新算法相结合,对强CNN基准产生了重大改进。
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
标签 - 不平衡和组敏感分类中的目标是优化相关的指标,例如平衡错误和相同的机会。经典方法,例如加权交叉熵,在训练深网络到训练(TPT)的终端阶段时,这是超越零训练误差的训练。这种观察发生了最近在促进少数群体更大边值的直观机制之后开发启发式替代品的动力。与之前的启发式相比,我们遵循原则性分析,说明不同的损失调整如何影响边距。首先,我们证明,对于在TPT中训练的所有线性分类器,有必要引入乘法,而不是添加性的Logit调整,以便对杂项边缘进行适当的变化。为了表明这一点,我们发现将乘法CE修改的连接到成本敏感的支持向量机。也许是违反,我们还发现,在培训开始时,相同的乘法权重实际上可以损害少数群体。因此,虽然在TPT中,添加剂调整无效,但我们表明它们可以通过对乘法重量的初始负效应进行抗衡来加速会聚。通过这些发现的动机,我们制定了矢量缩放(VS)丢失,即捕获现有技术作为特殊情况。此外,我们引入了对群体敏感分类的VS损失的自然延伸,从而以统一的方式处理两种常见类型的不平衡(标签/组)。重要的是,我们对最先进的数据集的实验与我们的理论见解完全一致,并确认了我们算法的卓越性能。最后,对于不平衡的高斯 - 混合数据,我们执行泛化分析,揭示平衡/标准错误和相同机会之间的权衡。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译
We introduce a tunable loss function called $\alpha$-loss, parameterized by $\alpha \in (0,\infty]$, which interpolates between the exponential loss ($\alpha = 1/2$), the log-loss ($\alpha = 1$), and the 0-1 loss ($\alpha = \infty$), for the machine learning setting of classification. Theoretically, we illustrate a fundamental connection between $\alpha$-loss and Arimoto conditional entropy, verify the classification-calibration of $\alpha$-loss in order to demonstrate asymptotic optimality via Rademacher complexity generalization techniques, and build-upon a notion called strictly local quasi-convexity in order to quantitatively characterize the optimization landscape of $\alpha$-loss. Practically, we perform class imbalance, robustness, and classification experiments on benchmark image datasets using convolutional-neural-networks. Our main practical conclusion is that certain tasks may benefit from tuning $\alpha$-loss away from log-loss ($\alpha = 1$), and to this end we provide simple heuristics for the practitioner. In particular, navigating the $\alpha$ hyperparameter can readily provide superior model robustness to label flips ($\alpha > 1$) and sensitivity to imbalanced classes ($\alpha < 1$).
translated by 谷歌翻译
限制机器学习系统的故障对于安全至关重要的应用至关重要。为了提高机器学习系统的鲁棒性,已提出了分配鲁棒优化(DRO)作为经验风险最小化(ERM)的概括。然而,由于与ERM的随机梯度下降(SGD)优化器相比,由于可用于DRO的优化器的相对效率相对效率相对低效率,因此在深度学习中的使用受到了严格的限制。我们建议使用硬度加权采样的SGD,这是机器学习中DRO的原则性高效优化方法,在深度学习的背景下特别适合。与实践中的硬示例挖掘策略类似,所提出的算法可以直接实施和计算,并且与用于深度学习的基于SGD的优化器一样有效,需要最小的开销计算。与典型的临时硬采矿方法相反,我们证明了我们的DRO算法的收敛性,用于过度参数化的深度学习网络,并具有RELU激活以及有限数量的层和参数。我们对MRI中胎儿脑3D MRI分割和脑肿瘤分割的实验证明了我们方法的可行性和有用性。使用我们的硬度加权采样进行训练,最先进的深度学习管道可改善自动胎儿脑中解剖学变异的鲁棒性3D MRI分割,并改善了对脑肿瘤分割的图像方案变化的鲁棒性。我们的代码可从https://github.com/lucasfidon/hardnessweightedsampler获得。
translated by 谷歌翻译
组选择的最佳子集(BSG)是选择一小部分非重叠组以在响应变量上获得最佳解释性的过程。它吸引了越来越多的关注,并且在实践中具有深远的应用。但是,由于BSG在高维环境中的计算棘手性,开发用于解决BSGS的有效算法仍然是研究热点。在本文中,我们提出了一种划分的算法,该算法迭代地检测相关组并排除了无关的组。此外,再加上新的组信息标准,我们开发了一种自适应算法来确定最佳模型大小。在轻度条件下,我们的算法可以在多项式时间内以高概率确定组的最佳子集是可以证明的。最后,我们通过将它们与合成数据集和现实世界中的几种最新算法进行比较来证明我们的方法的效率和准确性。
translated by 谷歌翻译
由于在数据稀缺的设置中,交叉验证的性能不佳,我们提出了一个新颖的估计器,以估计数据驱动的优化策略的样本外部性能。我们的方法利用优化问题的灵敏度分析来估计梯度关于数据中噪声量的最佳客观值,并利用估计的梯度将策略的样本中的表现为依据。与交叉验证技术不同,我们的方法避免了为测试集牺牲数据,在训练和因此非常适合数据稀缺的设置时使用所有数据。我们证明了我们估计量的偏见和方差范围,这些问题与不确定的线性目标优化问题,但已知的,可能是非凸的,可行的区域。对于更专业的优化问题,从某种意义上说,可行区域“弱耦合”,我们证明结果更强。具体而言,我们在估算器的错误上提供明确的高概率界限,该估计器在策略类别上均匀地保持,并取决于问题的维度和策略类的复杂性。我们的边界表明,在轻度条件下,随着优化问题的尺寸的增长,我们的估计器的误差也会消失,即使可用数据的量仍然很小且恒定。说不同的是,我们证明我们的估计量在小型数据中的大规模政权中表现良好。最后,我们通过数值将我们提出的方法与最先进的方法进行比较,通过使用真实数据调度紧急医疗响应服务的案例研究。我们的方法提供了更准确的样本外部性能估计,并学习了表现更好的政策。
translated by 谷歌翻译
Equipping predicted segmentation with calibrated uncertainty is essential for safety-critical applications. In this work, we focus on capturing the data-inherent uncertainty (aka aleatoric uncertainty) in segmentation, typically when ambiguities exist in input images. Due to the high-dimensional output space and potential multiple modes in segmenting ambiguous images, it remains challenging to predict well-calibrated uncertainty for segmentation. To tackle this problem, we propose a novel mixture of stochastic experts (MoSE) model, where each expert network estimates a distinct mode of the aleatoric uncertainty and a gating network predicts the probabilities of an input image being segmented in those modes. This yields an efficient two-level uncertainty representation. To learn the model, we develop a Wasserstein-like loss that directly minimizes the distribution distance between the MoSE and ground truth annotations. The loss can easily integrate traditional segmentation quality measures and be efficiently optimized via constraint relaxation. We validate our method on the LIDC-IDRI dataset and a modified multimodal Cityscapes dataset. Results demonstrate that our method achieves the state-of-the-art or competitive performance on all metrics.
translated by 谷歌翻译
ROC曲线(AUC)下的面积是机器学习的关键指标,它评估了所有可能的真实正率(TPR)和假阳性率(FPRS)的平均性能。基于以下知识:熟练的分类器应同时拥抱高的TPR和低FPR,我们转向研究一个更通用的变体,称为双向部分AUC(TPAUC),其中只有$ \ Mathsf {Tpr} \ ge ge ge ge \ alpha,\ mathsf {fpr} \ le \ beta $包含在该区域中。此外,最近的工作表明,TPAUC与现有的部分AUC指标基本上不一致,在该指标中,只有FPR范围受到限制,为寻求解决方案以利用高TPAUC开辟了一个新问题。在此激励的情况下,我们在本文中提出了优化该新指标的第一个试验。本课程的关键挑战在于难以通过端到端随机训练进行基于梯度的优化,即使有适当的替代损失选择。为了解决这个问题,我们提出了一个通用框架来构建替代优化问题,该问题支持有效的端到端培训,并深入学习。此外,我们的理论分析表明:1)替代问题的目标函数将在轻度条件下实现原始问题的上限,2)优化替代问题会导致TPAUC的良好概括性能,并且具有很高的可能性。最后,对几个基准数据集的实证研究表达了我们框架的功效。
translated by 谷歌翻译
深入学习在现代分类任务中取得了许多突破。已经提出了众多架构用于不同的数据结构,但是当涉及丢失功能时,跨熵损失是主要的选择。最近,若干替代损失已经看到了深度分类器的恢复利益。特别是,经验证据似乎促进了方形损失,但仍然缺乏理论效果。在这项工作中,我们通过系统地研究了在神经切线内核(NTK)制度中的过度分化的神经网络的表现方式来促进对分类方面损失的理论理解。揭示了关于泛化误差,鲁棒性和校准错误的有趣特性。根据课程是否可分离,我们考虑两种情况。在一般的不可分类案例中,为错误分类率和校准误差建立快速收敛速率。当类是可分离的时,错误分类率改善了速度快。此外,经过证明得到的余量被证明是低于零的较低,提供了鲁棒性的理论保证。我们希望我们的调查结果超出NTK制度并转化为实际设置。为此,我们对实际神经网络进行广泛的实证研究,展示了合成低维数据和真实图像数据中方损的有效性。与跨熵相比,方形损耗具有可比的概括误差,但具有明显的鲁棒性和模型校准的优点。
translated by 谷歌翻译
嵌套模拟涉及通过模拟估算条件期望的功能。在本文中,我们提出了一种基于内核RIDGE回归的新方法,利用作为多维调节变量的函数的条件期望的平滑度。渐近分析表明,随着仿真预算的增加,所提出的方法可以有效地减轻了对收敛速度的维度诅咒,只要条件期望足够平滑。平滑度桥接立方根收敛速度之间的间隙(即标准嵌套模拟的最佳速率)和平方根收敛速率(即标准蒙特卡罗模拟的规范率)。我们通过来自投资组合风险管理和输入不确定性量化的数值例子来证明所提出的方法的性能。
translated by 谷歌翻译
We study a natural extension of classical empirical risk minimization, where the hypothesis space is a random subspace of a given space. In particular, we consider possibly data dependent subspaces spanned by a random subset of the data, recovering as a special case Nystrom approaches for kernel methods. Considering random subspaces naturally leads to computational savings, but the question is whether the corresponding learning accuracy is degraded. These statistical-computational tradeoffs have been recently explored for the least squares loss and self-concordant loss functions, such as the logistic loss. Here, we work to extend these results to convex Lipschitz loss functions, that might not be smooth, such as the hinge loss used in support vector machines. This unified analysis requires developing new proofs, that use different technical tools, such as sub-gaussian inputs, to achieve fast rates. Our main results show the existence of different settings, depending on how hard the learning problem is, for which computational efficiency can be improved with no loss in performance.
translated by 谷歌翻译
我们考虑为多类分类任务生产公平概率分类器的问题。我们以“投射”预先培训(且可能不公平的)分类器在满足目标群体对要求的一组模型上的“投影”来提出这个问题。新的投影模型是通过通过乘法因子后处理预训练的分类器的输出来给出的。我们提供了一种可行的迭代算法,用于计算投影分类器并得出样本复杂性和收敛保证。与最先进的基准测试的全面数值比较表明,我们的方法在准确性权衡曲线方面保持了竞争性能,同时在大型数据集中达到了有利的运行时。我们还在具有多个类别,多个相互保护组和超过1M样本的开放数据集上评估了我们的方法。
translated by 谷歌翻译
We study distributionally robust optimization (DRO) with Sinkhorn distance -- a variant of Wasserstein distance based on entropic regularization. We provide convex programming dual reformulation for a general nominal distribution. Compared with Wasserstein DRO, it is computationally tractable for a larger class of loss functions, and its worst-case distribution is more reasonable. We propose an efficient first-order algorithm with bisection search to solve the dual reformulation. We demonstrate that our proposed algorithm finds $\delta$-optimal solution of the new DRO formulation with computation cost $\tilde{O}(\delta^{-3})$ and memory cost $\tilde{O}(\delta^{-2})$, and the computation cost further improves to $\tilde{O}(\delta^{-2})$ when the loss function is smooth. Finally, we provide various numerical examples using both synthetic and real data to demonstrate its competitive performance and light computational speed.
translated by 谷歌翻译
异常值广泛发生在大数据应用中,可能严重影响统计估计和推理。在本文中,引入了抗强估计的框架,以强制任意给出的损耗函数。它与修剪方法密切连接,并且包括所有样本的显式外围参数,这反过来促进计算,理论和参数调整。为了解决非凸起和非体性的问题,我们开发可扩展的算法,以实现轻松和保证快速收敛。特别地,提出了一种新的技术来缓解对起始点的要求,使得在常规数据集上,可以大大减少数据重采样的数量。基于组合的统计和计算处理,我们能够超越M估计来执行非因思分析。所获得的抗性估算器虽然不一定全局甚至是局部最佳的,但在低维度和高维度中享有最小的速率最优性。回归,分类和神经网络的实验表明,在总异常值发生的情况下提出了拟议方法的优异性能。
translated by 谷歌翻译
个性化决定规则(IDR)是一个决定函数,可根据他/她观察到的特征分配给定的治疗。文献中的大多数现有工作考虑使用二进制或有限的许多治疗方案的设置。在本文中,我们专注于连续治疗设定,并提出跳跃间隔 - 学习,开发一个最大化预期结果的个性化间隔值决定规则(I2DR)。与推荐单一治疗的IDRS不同,所提出的I2DR为每个人产生了一系列治疗方案,使其在实践中实施更加灵活。为了获得最佳I2DR,我们的跳跃间隔学习方法估计通过跳转惩罚回归给予治疗和协变量的结果的条件平均值,并基于估计的结果回归函数来衍生相应的最佳I2DR。允许回归线是用于清晰的解释或深神经网络的线性,以模拟复杂的处理 - 协调会相互作用。为了实现跳跃间隔学习,我们开发了一种基于动态编程的搜索算法,其有效计算结果回归函数。当结果回归函数是处理空间的分段或连续功能时,建立所得I2DR的统计特性。我们进一步制定了一个程序,以推断(估计)最佳政策下的平均结果。进行广泛的模拟和对华法林研究的真实数据应用,以证明所提出的I2DR的经验有效性。
translated by 谷歌翻译