ROC曲线(AUC)下的面积是机器学习的关键指标,它评估了所有可能的真实正率(TPR)和假阳性率(FPRS)的平均性能。基于以下知识:熟练的分类器应同时拥抱高的TPR和低FPR,我们转向研究一个更通用的变体,称为双向部分AUC(TPAUC),其中只有$ \ Mathsf {Tpr} \ ge ge ge ge \ alpha,\ mathsf {fpr} \ le \ beta $包含在该区域中。此外,最近的工作表明,TPAUC与现有的部分AUC指标基本上不一致,在该指标中,只有FPR范围受到限制,为寻求解决方案以利用高TPAUC开辟了一个新问题。在此激励的情况下,我们在本文中提出了优化该新指标的第一个试验。本课程的关键挑战在于难以通过端到端随机训练进行基于梯度的优化,即使有适当的替代损失选择。为了解决这个问题,我们提出了一个通用框架来构建替代优化问题,该问题支持有效的端到端培训,并深入学习。此外,我们的理论分析表明:1)替代问题的目标函数将在轻度条件下实现原始问题的上限,2)优化替代问题会导致TPAUC的良好概括性能,并且具有很高的可能性。最后,对几个基准数据集的实证研究表达了我们框架的功效。
translated by 谷歌翻译
由于课堂之间不可避免的语义歧义,TOP-K错误已成为大规模分类基准测试的流行指标。有关TOP-K优化的现有文献通常集中于TOP-K目标的优化方法,同时忽略了度量本身的局限性。在本文中,我们指出,顶级目标缺乏足够的歧视,因此诱导的预测可能使完全无关的标签成为最高等级。为了解决此问题,我们开发了一个新颖的度量标准,名为Top-K曲线(AUTKC)下的部分区域。理论分析表明,AUTKC具有更好的歧视能力,其贝叶斯最佳分数函数可以在条件概率方面给出正确的顶级排名。这表明AUTKC不允许无关标签出现在顶部列表中。此外,我们提出了一个经验替代风险最小化框架,以优化拟议的指标。从理论上讲,我们提出(1)贝叶斯最佳分数函数的渔民一致性的足够条件; (2)在简单的超参数设置下对类不敏感的概括上限。最后,四个基准数据集的实验结果验证了我们提出的框架的有效性。
translated by 谷歌翻译
众所周知,深度学习模型容易受到对抗性例子的影响。现有对对抗训练的研究已在这一挑战中取得了长足的进步。作为一个典型的特征,他们经常认为班级分布总体平衡。但是,在广泛的应用中,长尾数据集无处不在,其中头等级实例的数量大于尾巴类。在这种情况下,AUC比准确度更合理,因为它对课堂分布不敏感。在此激励的情况下,我们提出了一项早期试验,以探索对抗性训练方法以优化AUC。主要的挑战在于,积极和负面的例子与目标函数紧密结合。作为直接结果,如果没有数据集进行全面扫描,就无法生成对抗示例。为了解决此问题,基于凹入的正则化方案,我们将AUC优化问题重新制定为鞍点问题,该问题将成为实例函数。这导致端到端培训方案。此外,我们提供了提出的算法的收敛保证。我们的分析与现有研究不同,因为该算法被要求通过计算Min-Max问题的梯度来产生对抗性示例。最后,广泛的实验结果表明,在三个长尾数据集中,我们的算法的性能和鲁棒性。
translated by 谷歌翻译
近年来,已取得了巨大进展,以通过半监督学习(SSL)来纳入未标记的数据来克服效率低下的监督问题。大多数最先进的模型是基于对未标记的数据追求一致的模型预测的想法,该模型被称为输入噪声,这称为一致性正则化。尽管如此,对其成功的原因缺乏理论上的见解。为了弥合理论和实际结果之间的差距,我们在本文中提出了SSL的最坏情况一致性正则化技术。具体而言,我们首先提出了针对SSL的概括,该概括由分别在标记和未标记的训练数据上观察到的经验损失项组成。在这种界限的激励下,我们得出了一个SSL目标,该目标可最大程度地减少原始未标记的样本与其多重增强变体之间最大的不一致性。然后,我们提供了一种简单但有效的算法来解决提出的最小问题,从理论上证明它会收敛到固定点。五个流行基准数据集的实验验证了我们提出的方法的有效性。
translated by 谷歌翻译
ROC曲线下的区域(又称AUC)是评估分类器不平衡数据的性能的选择。 AUC最大化是指通过直接最大化其AUC分数来学习预测模型的学习范式。它已被研究了二十年来,其历史可以追溯到90年代后期,从那时起,大量工作就致力于最大化。最近,对大数据和深度学习的深度最大化的随机AUC最大化已受到越来越多的关注,并对解决现实世界中的问题产生了巨大的影响。但是,据我们所知,没有对AUC最大化的相关作品进行全面调查。本文旨在通过回顾过去二十年来审查文献来解决差距。我们不仅给出了文献的整体看法,而且还提供了从配方到算法和理论保证的不同论文的详细解释和比较。我们还确定并讨论了深度AUC最大化的剩余和新兴问题,并就未来工作的主题提供建议。
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
在结果决策中使用机器学习模型通常会加剧社会不平等,特别是对种族和性别定义的边缘化群体成员产生不同的影响。 ROC曲线(AUC)下的区域被广泛用于评估机器学习中评分功能的性能,但与其他性能指标相比,在算法公平性中进行了研究。由于AUC的成对性质,定义基于AUC的组公平度量是成对依赖性的,并且可能涉及\ emph {group}和\ emph {group} aucs。重要的是,仅考虑一种AUC类别不足以减轻AUC优化的不公平性。在本文中,我们提出了一个最小值学习和偏置缓解框架,该框架既包含组内和组间AUC,同时保持实用性。基于这个Rawlsian框架,我们设计了一种有效的随机优化算法,并证明了其收敛到最小组级AUC。我们对合成数据集和现实数据集进行了数值实验,以验证Minimax框架的有效性和所提出的优化算法。
translated by 谷歌翻译
Precision-Recall曲线(AUPRC)下区域的随机优化是机器学习的关键问题。尽管已经对各种算法进行了广泛研究以进行AUPRC优化,但仅在多Query情况下保证了概括。在这项工作中,我们介绍了随机AUPRC优化的一次性概括中的第一个试验。对于更庞大的概括范围,我们专注于算法依赖性概括。我们目的地都有算法和理论障碍。从算法的角度来看,我们注意到,仅当采样策略偏见时,大多数现有随机估计器才会偏向,并且由于不可兼容性而不稳定。为了解决这些问题,我们提出了一个具有卓越稳定性的采样率不变的无偏随机估计器。最重要的是,AUPRC优化是作为组成优化问题配制的,并提出了随机算法来解决此问题。从理论的角度来看,算法依赖性概括分析的标准技术不能直接应用于这种列表的组成优化问题。为了填补这一空白,我们将模型稳定性从实例损失扩展到列表损失,并弥合相应的概括和稳定性。此外,我们构建状态过渡矩阵以描述稳定性的复发,并通过矩阵频谱简化计算。实际上,关于三个图像检索数据集的实验结果谈到了我们框架的有效性和健全性。
translated by 谷歌翻译
最近提出的协作度量学习(CML)范式由于其简单性和有效性引起了人们对推荐系统(RS)领域的广泛兴趣。通常,CML的现有文献在很大程度上取决于\ textit {负抽样}策略,以减轻成对计算的耗时负担。但是,在这项工作中,通过进行理论分析,我们发现负抽样会导致对概括误差的偏差估计。具体而言,我们表明,基于抽样的CML将在概括性结合中引入一个偏差项,该术语是由per-use \ textit {total方差}(TV)量化的,在负面采样和地面真相分布引起的分布之间。这表明,即使有足够大的训练数据,优化基于采样的CML损耗函数也不能确保小概括误差。此外,我们表明偏见术语将消失,而无需负面抽样策略。在此激励的情况下,我们提出了一种有效的替代方案,而没有对CML进行负面采样的cml,name \ textit {无抽样协作度量学习}(SFCML),以消除实际意义上的采样偏见。最后,超过七个基准数据集的全面实验表达了所提出的算法的优势。
translated by 谷歌翻译
在本文中,我们提出了适用于深度学习的单向和双向部分AUC(PAUC)最大化的系统和高效的基于梯度的方法。我们通过使用分布强大的优化(DRO)来定义每个单独的积极数据的损失,提出了PAUC替代目标的新公式。我们考虑了两种DRO的配方,其中一种是基于条件 - 价值风险(CVAR),该风险(CVAR)得出了PAUC的非平滑但精确的估计器,而另一个基于KL差异正则DRO产生不确定的dro。但是PAUC的平滑(软)估计器。对于单向和双向PAUC最大化,我们提出了两种算法,并证明了它们分别优化其两种配方的收敛性。实验证明了所提出的算法对PAUC最大化的有效性,以对各种数据集进行深度学习。
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
尽管学习已成为现代信息处理的核心组成部分,但现在有足够的证据表明它可以导致偏见,不安全和有偏见的系统。因此,对学习要求施加要求至关重要,尤其是在达到社会,工业和医疗领域的关键应用程序时。但是,大多数现代统计问题的非跨性别性只有通过限制引入而加剧。尽管通常可以使用经验风险最小化来学习良好的无约束解决方案,即使获得满足统计约束的模型也可能具有挑战性。更重要的是,一个好。在本文中,我们通过在经验双重领域中学习来克服这个问题,在经验的双重领域中,统计学上的统计学习问题变得不受限制和确定性。我们通过界定经验二元性差距来分析这种方法的概括特性 - 即,我们的近似,可拖动解决方案与原始(非凸)统计问题的解决方案之间的差异 - 并提供实用的约束学习算法。这些结果建立了与经典学习理论的约束,从而可以明确地在学习中使用约束。我们说明了这种理论和算法受到速率受限的学习应用,这是在公平和对抗性鲁棒性中产生的。
translated by 谷歌翻译
We introduce a tunable loss function called $\alpha$-loss, parameterized by $\alpha \in (0,\infty]$, which interpolates between the exponential loss ($\alpha = 1/2$), the log-loss ($\alpha = 1$), and the 0-1 loss ($\alpha = \infty$), for the machine learning setting of classification. Theoretically, we illustrate a fundamental connection between $\alpha$-loss and Arimoto conditional entropy, verify the classification-calibration of $\alpha$-loss in order to demonstrate asymptotic optimality via Rademacher complexity generalization techniques, and build-upon a notion called strictly local quasi-convexity in order to quantitatively characterize the optimization landscape of $\alpha$-loss. Practically, we perform class imbalance, robustness, and classification experiments on benchmark image datasets using convolutional-neural-networks. Our main practical conclusion is that certain tasks may benefit from tuning $\alpha$-loss away from log-loss ($\alpha = 1$), and to this end we provide simple heuristics for the practitioner. In particular, navigating the $\alpha$ hyperparameter can readily provide superior model robustness to label flips ($\alpha > 1$) and sensitivity to imbalanced classes ($\alpha < 1$).
translated by 谷歌翻译
成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
现代统计应用常常涉及最小化可能是非流动和/或非凸起的目标函数。本文侧重于广泛的Bregman-替代算法框架,包括本地线性近似,镜像下降,迭代阈值,DC编程以及许多其他实例。通过广义BREGMAN功能的重新发出使我们能够构建合适的误差测量并在可能高维度下建立非凸起和非凸起和非球形目标的全球收敛速率。对于稀疏的学习问题,在一些规律性条件下,所获得的估算器作为代理人的固定点,尽管不一定是局部最小化者,但享受可明确的统计保障,并且可以证明迭代顺序在所需的情况下接近统计事实准确地快速。本文还研究了如何通过仔细控制步骤和放松参数来设计基于适应性的动力的加速度而不假设凸性或平滑度。
translated by 谷歌翻译
Traditional machine learning follows a close-set assumption that the training and test set share the same label space. While in many practical scenarios, it is inevitable that some test samples belong to unknown classes (open-set). To fix this issue, Open-Set Recognition (OSR), whose goal is to make correct predictions on both close-set samples and open-set samples, has attracted rising attention. In this direction, the vast majority of literature focuses on the pattern of open-set samples. However, how to evaluate model performance in this challenging task is still unsolved. In this paper, a systematic analysis reveals that most existing metrics are essentially inconsistent with the aforementioned goal of OSR: (1) For metrics extended from close-set classification, such as Open-set F-score, Youden's index, and Normalized Accuracy, a poor open-set prediction can escape from a low performance score with a superior close-set prediction. (2) Novelty detection AUC, which measures the ranking performance between close-set and open-set samples, ignores the close-set performance. To fix these issues, we propose a novel metric named OpenAUC. Compared with existing metrics, OpenAUC enjoys a concise pairwise formulation that evaluates open-set performance and close-set performance in a coupling manner. Further analysis shows that OpenAUC is free from the aforementioned inconsistency properties. Finally, an end-to-end learning method is proposed to minimize the OpenAUC risk, and the experimental results on popular benchmark datasets speak to its effectiveness.
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.
translated by 谷歌翻译
古典统计学习理论表示,拟合太多参数导致过度舒服和性能差。尽管大量参数矛盾,但是现代深度神经网络概括了这一发现,并构成了解释深度学习成功的主要未解决的问题。随机梯度下降(SGD)引起的隐式正规被认为是重要的,但其特定原则仍然是未知的。在这项工作中,我们研究了当地最小值周围的能量景观的局部几何学如何影响SGD的统计特性,具有高斯梯度噪声。我们争辩说,在合理的假设下,局部几何形状力强制SGD保持接近低维子空间,这会引起隐式正则化并导致深神经网络的泛化误差界定更严格的界限。为了获得神经网络的泛化误差界限,我们首先引入局部最小值周围的停滞迹象,并施加人口风险的局部基本凸性财产。在这些条件下,推导出SGD的下界,以保留在这些停滞套件中。如果发生停滞,我们会导出涉及权重矩阵的光谱规范的深神经网络的泛化误差的界限,但不是网络参数的数量。从技术上讲,我们的证据基于控制SGD中的参数值的变化以及基于局部最小值周围的合适邻域的熵迭代的参数值和局部均匀收敛。我们的工作试图通过统一收敛更好地连接非凸优化和泛化分析。
translated by 谷歌翻译