众所周知,深度学习模型容易受到对抗性例子的影响。现有对对抗训练的研究已在这一挑战中取得了长足的进步。作为一个典型的特征,他们经常认为班级分布总体平衡。但是,在广泛的应用中,长尾数据集无处不在,其中头等级实例的数量大于尾巴类。在这种情况下,AUC比准确度更合理,因为它对课堂分布不敏感。在此激励的情况下,我们提出了一项早期试验,以探索对抗性训练方法以优化AUC。主要的挑战在于,积极和负面的例子与目标函数紧密结合。作为直接结果,如果没有数据集进行全面扫描,就无法生成对抗示例。为了解决此问题,基于凹入的正则化方案,我们将AUC优化问题重新制定为鞍点问题,该问题将成为实例函数。这导致端到端培训方案。此外,我们提供了提出的算法的收敛保证。我们的分析与现有研究不同,因为该算法被要求通过计算Min-Max问题的梯度来产生对抗性示例。最后,广泛的实验结果表明,在三个长尾数据集中,我们的算法的性能和鲁棒性。
translated by 谷歌翻译
改善深度神经网络(DNN)对抗对抗示例的鲁棒性是安全深度学习的重要而挑战性问题。跨越现有的防御技术,具有预计梯度体面(PGD)的对抗培训是最有效的。对手训练通过最大化分类丢失,通过最大限度地减少从内在最大化生成的逆势示例的丢失来解决\ excepitient {内部最大化}生成侵略性示例的初始最大优化问题。 。因此,衡量内部最大化的衡量标准是如何对对抗性培训至关重要的。在本文中,我们提出了这种标准,即限制优化(FOSC)的一阶静止条件,以定量评估内部最大化中发现的对抗性实例的收敛质量。通过FOSC,我们发现,为了确保更好的稳健性,必须在培训的\ Texit {稍后的阶段}中具有更好的收敛质量的对抗性示例。然而,在早期阶段,高收敛质量的对抗例子不是必需的,甚至可能导致稳健性差。基于这些观察,我们提出了一种\ Texit {动态}培训策略,逐步提高产生的对抗性实例的收敛质量,这显着提高了对抗性培训的鲁棒性。我们的理论和经验结果表明了该方法的有效性。
translated by 谷歌翻译
我们考虑非凸凹minimax问题,$ \ min _ {\ mathbf {x}} \ mathcal {y}} f(\ mathbf {x},\ mathbf {y})$, $ f $在$ \ mathbf {x} $ on $ \ mathbf {y} $和$ \ mathcal {y} $中的$ \ \ mathbf {y} $。解决此问题的最受欢迎的算法之一是庆祝的梯度下降上升(GDA)算法,已广泛用于机器学习,控制理论和经济学。尽管凸凹设置的广泛收敛结果,但具有相等步骤的GDA可以收敛以限制循环甚至在一般设置中发散。在本文中,我们介绍了两次尺度GDA的复杂性结果,以解决非膨胀凹入的最小问题,表明该算法可以找到函数$ \ phi(\ cdot)的静止点:= \ max _ {\ mathbf {Y} \ In \ Mathcal {Y}} F(\ CDOT,\ MATHBF {Y})高效。据我们所知,这是对这一环境中的两次尺度GDA的第一个非因对药分析,阐明了其在培训生成对抗网络(GANS)和其他实际应用中的优越实际表现。
translated by 谷歌翻译
在论文中,我们提出了一类加速的零顺序,用于非凸迷你优化和最小值优化的一类加速的零序命令和一流的动量方法。具体而言,我们提出了一种新的加速零级动量(ACC-ZOM)方法,用于黑箱迷你优化。此外,我们证明我们的ACC-ZOM方法达到$ \ TILDE {O}的较低查询复杂性(D ^ {3/4} \ epsilon ^ {-3})$寻找$ \ epsilon $ -stationary point,这通过$ o(d ^ {1/4})$ of the $ d $表示可变尺寸。特别是,ACC-ZOM不需要现有的零点随机算法中所需的大批次。同时,我们提出了一种加速\ TextBF {Zeroth-Order} moneotum血管下降(ACC-ZOMDA)方法,用于\ TextBF {Black-Box} Minimax-Optimization,它获得$ \ TINDE {O}的查询复杂性((d_1 + d_2)^ {3/4} \ kappa_y ^ {4.5} \ epsilon ^ { - 3})$没有大批次查找$ \ epsilon $ -stationary point,其中$ d_1 $和$ d_2 $ demote变量尺寸和$ \ kappa_y $是条件号。此外,我们提出了一种加速\ TextBF {一阶}势头血管下降(ACC-MDA)方法,用于\ textBF {White-Box} Minimax优化,它具有$ \ tilde {o}(\ kappa_y ^ { 4.5} \ epsilon ^ { - 3})$无大批次查找$ \ epsilon $ -stationary point。特别是,我们的ACC-MDA可以获得$ \ tilde {o}(\ kappa_y ^ {2.5} \ epsilon ^ {-3})$的较低渐变复杂性,具有批量尺寸$ o(\ kappa_y ^ 4)$。对黑匣子对抗攻击深度神经网络(DNN)和中毒攻击的广泛实验结果表明了我们算法的效率。
translated by 谷歌翻译
ROC曲线(AUC)下的面积是机器学习的关键指标,它评估了所有可能的真实正率(TPR)和假阳性率(FPRS)的平均性能。基于以下知识:熟练的分类器应同时拥抱高的TPR和低FPR,我们转向研究一个更通用的变体,称为双向部分AUC(TPAUC),其中只有$ \ Mathsf {Tpr} \ ge ge ge ge \ alpha,\ mathsf {fpr} \ le \ beta $包含在该区域中。此外,最近的工作表明,TPAUC与现有的部分AUC指标基本上不一致,在该指标中,只有FPR范围受到限制,为寻求解决方案以利用高TPAUC开辟了一个新问题。在此激励的情况下,我们在本文中提出了优化该新指标的第一个试验。本课程的关键挑战在于难以通过端到端随机训练进行基于梯度的优化,即使有适当的替代损失选择。为了解决这个问题,我们提出了一个通用框架来构建替代优化问题,该问题支持有效的端到端培训,并深入学习。此外,我们的理论分析表明:1)替代问题的目标函数将在轻度条件下实现原始问题的上限,2)优化替代问题会导致TPAUC的良好概括性能,并且具有很高的可能性。最后,对几个基准数据集的实证研究表达了我们框架的功效。
translated by 谷歌翻译
本文重点介绍了解决光滑非凸强凹入最小问题的随机方法,这导致了由于其深度学习中的潜在应用而受到越来越长的关注(例如,深度AUC最大化,分布鲁棒优化)。然而,大多数现有算法在实践中都很慢,并且它们的分析围绕到几乎静止点的收敛。我们考虑利用Polyak-\ L Ojasiewicz(PL)条件来设计更快的随机算法,具有更强的收敛保证。尽管已经用于设计许多随机最小化算法的PL条件,但它们对非凸敏最大优化的应用仍然罕见。在本文中,我们提出并分析了基于近端的跨越时代的方法的通用框架,许多众所周知的随机更新嵌入。以{\ BF原始物镜差和二元间隙}的方式建立快速收敛。与现有研究相比,(i)我们的分析基于一个新的Lyapunov函数,包括原始物理差距和正则化功能的二元间隙,(ii)结果更加全面,提高了更好的依赖性的速率不同假设下的条件号。我们还开展深层和非深度学习实验,以验证我们的方法的有效性。
translated by 谷歌翻译
在许多机器学习应用程序中出现了非convex-concave min-max问题,包括最大程度地减少一组非凸函数的最大程度,并对神经网络的强大对抗训练。解决此问题的一种流行方法是梯度下降(GDA)算法,不幸的是,在非凸性的情况下可以表现出振荡。在本文中,我们引入了一种“平滑”方案,该方案可以与GDA结合以稳定振荡并确保收敛到固定溶液。我们证明,稳定的GDA算法可以实现$ O(1/\ epsilon^2)$迭代复杂性,以最大程度地减少有限的非convex函数收集的最大值。此外,平滑的GDA算法达到了$ O(1/\ epsilon^4)$ toseration复杂性,用于一般的nonconvex-concave问题。提出了这种稳定的GDA算法的扩展到多块情况。据我们所知,这是第一个实现$ o(1/\ epsilon^2)$的算法,用于一类NonConvex-Concave问题。我们说明了稳定的GDA算法在健壮训练中的实际效率。
translated by 谷歌翻译
In the paper, we study a class of useful minimax problems on Riemanian manifolds and propose a class of effective Riemanian gradient-based methods to solve these minimax problems. Specifically, we propose an effective Riemannian gradient descent ascent (RGDA) algorithm for the deterministic minimax optimization. Moreover, we prove that our RGDA has a sample complexity of $O(\kappa^2\epsilon^{-2})$ for finding an $\epsilon$-stationary solution of the Geodesically-Nonconvex Strongly-Concave (GNSC) minimax problems, where $\kappa$ denotes the condition number. At the same time, we present an effective Riemannian stochastic gradient descent ascent (RSGDA) algorithm for the stochastic minimax optimization, which has a sample complexity of $O(\kappa^4\epsilon^{-4})$ for finding an $\epsilon$-stationary solution. To further reduce the sample complexity, we propose an accelerated Riemannian stochastic gradient descent ascent (Acc-RSGDA) algorithm based on the momentum-based variance-reduced technique. We prove that our Acc-RSGDA algorithm achieves a lower sample complexity of $\tilde{O}(\kappa^{4}\epsilon^{-3})$ in searching for an $\epsilon$-stationary solution of the GNSC minimax problems. Extensive experimental results on the robust distributional optimization and robust Deep Neural Networks (DNNs) training over Stiefel manifold demonstrate efficiency of our algorithms.
translated by 谷歌翻译
Minimax优化已成为许多机器学习(ML)问题的骨干。尽管优化算法的收敛行为已在minimax设置中进行了广泛的研究,但它们在随机环境中的概括保证,即对经验数据训练的解决方案如何在看不见的测试数据上执行,但相对却相对均未被倍增。一个基本问题仍然难以捉摸:研究最小学习者的概括是什么?在本文中,我们的目标是首先证明原始风险是研究最小化中的普遍性的普遍指标,在简单的最小问题示例中失败了。此外,由于鞍点不存在,另一个流行的指标,即原始的双重风险,也无法表征非凸度问题的最小值问题的概括行为。因此,我们提出了一个新的指标,以研究最小学习者的概括:原始差距,以规避这些问题。接下来,我们在非convex-concave设置中得出原始差距的概括范围。作为我们分析的副产品,我们还解决了两个空旷的问题:在强大意义上,建立原始风险和原始偶发风险的概括范围,即没有强大的凹面或假设最大化和期望可以互换,而这些假设中的任何一个都可以互换在文献中需要。最后,我们利用这一新指标比较了两种流行算法的概括行为 - 梯度下降(GDA)和梯度下降 - 最大趋势 - 最小值优化。
translated by 谷歌翻译
最大限度的训练原则,最大限度地减少最大的对抗性损失,也称为对抗性培训(AT),已被证明是一种提高对抗性鲁棒性的最先进的方法。尽管如此,超出了在对抗环境中尚未经过严格探索的最小最大优化。在本文中,我们展示了如何利用多个领域的最小最大优化的一般框架,以推进不同类型的对抗性攻击的设计。特别是,给定一组风险源,最小化最坏情况攻击损失可以通过引入在域集的概率单纯x上最大化的域权重来重新重整为最小最大问题。我们在三次攻击生成问题中展示了这个统一的框架 - 攻击模型集合,在多个输入下设计了通用扰动,并制作攻击对数据转换的弹性。广泛的实验表明,我们的方法导致对现有的启发式策略以及对培训的最先进的防御方法而言,鲁棒性改善,培训对多种扰动类型具有稳健。此外,我们发现,从我们的MIN-MAX框架中学到的自调整域权重可以提供整体工具来解释跨域攻击难度的攻击水平。代码可在https://github.com/wangjksjtu/minmaxsod中获得。
translated by 谷歌翻译
在本文中,我们提出了Nesterov加速改组梯度(NASG),这是一种用于凸有限和最小化问题的新算法。我们的方法将传统的Nesterov的加速动量与不同的改组抽样方案相结合。我们证明,我们的算法使用统一的改组方案提高了$ \ Mathcal {o}(1/t)$的速率,其中$ t $是时代的数量。该速率比凸状制度中的任何其他改组梯度方法要好。我们的收敛分析不需要对有限域或有界梯度条件的假设。对于随机洗牌方案,我们进一步改善了收敛性。在采用某种初始条件时,我们表明我们的方法在解决方案的小社区附近收敛得更快。数值模拟证明了我们算法的效率。
translated by 谷歌翻译
Adversarial training based on the minimax formulation is necessary for obtaining adversarial robustness of trained models. However, it is conservative or even pessimistic so that it sometimes hurts the natural generalization. In this paper, we raise a fundamental question-do we have to trade off natural generalization for adversarial robustness? We argue that adversarial training is to employ confident adversarial data for updating the current model. We propose a novel formulation of friendly adversarial training (FAT): rather than employing most adversarial data maximizing the loss, we search for least adversarial data (i.e., friendly adversarial data) minimizing the loss, among the adversarial data that are confidently misclassified. Our novel formulation is easy to implement by just stopping the most adversarial data searching algorithms such as PGD (projected gradient descent) early, which we call early-stopped PGD. Theoretically, FAT is justified by an upper bound of the adversarial risk. Empirically, early-stopped PGD allows us to answer the earlier question negatively-adversarial robustness can indeed be achieved without compromising the natural generalization.* Equal contribution † Preliminary work was done during an internship at RIKEN AIP.
translated by 谷歌翻译
许多最先进的对抗性培训方法利用对抗性损失的上限来提供安全保障。然而,这些方法需要在每个训练步骤中计算,该步骤不能包含在梯度中的梯度以进行反向化。我们基于封闭形式的对抗性损失的封闭溶液引入了一种新的更具内容性的对抗性培训,可以有效地培养了背部衰退。通过稳健优化的最先进的工具促进了这一界限。我们使用我们的方法推出了两种新方法。第一种方法(近似稳健的上限或arub)使用网络的第一阶近似以及来自线性鲁棒优化的基本工具,以获得可以容易地实现的对抗丢失的近似偏置。第二种方法(鲁棒上限或摩擦)计算对抗性损失的精确上限。在各种表格和视觉数据集中,我们展示了我们更加原则的方法的有效性 - 摩擦比最先进的方法更强大,而是较大的扰动的最新方法,而谷会匹配的性能 - 小扰动的艺术方法。此外,摩擦和灌注速度比标准对抗性培训快(以牺牲内存增加)。重现结果的所有代码都可以在https://github.com/kimvc7/trobustness找到。
translated by 谷歌翻译
神经网络容易受到对抗性攻击的攻击:在其输入中添加精心设计,不可察觉的扰动可以改变其输出。对抗训练是针对此类攻击的训练强大模型的最有效方法之一。不幸的是,这种方法比神经网络的香草培训要慢得多,因为它需要在每次迭代时为整个培训数据构建对抗性示例。通过利用核心选择理论,我们展示了如何选择一小部分训练数据提供了一种原则性的方法来降低健壮训练的时间复杂性。为此,我们首先为对抗核心选择提供收敛保证。特别是,我们表明收敛界限直接与我们的核心在整个训练数据中计算出的梯度的距离如何。在我们的理论分析的激励下,我们建议使用此梯度近似误差作为对抗核心选择目标,以有效地减少训练集大小。建造后,我们在培训数据的这一子集上进行对抗训练。与现有方法不同,我们的方法可以适应各种培训目标,包括交易,$ \ ell_p $ -pgd和感知性对手培训。我们进行了广泛的实验,以证明我们的进近可以使对抗性训练加快2-3次,同时在清洁和稳健的精度中略有降解。
translated by 谷歌翻译
随机梯度下降(SGDA)及其变体一直是解决最小值问题的主力。但是,与研究有差异隐私(DP)约束的经过良好研究的随机梯度下降(SGD)相反,在理解具有DP约束的SGDA的概括(实用程序)方面几乎没有工作。在本文中,我们使用算法稳定性方法在不同的设置中建立DP-SGDA的概括(实用程序)。特别是,对于凸 - 凸环设置,我们证明DP-SGDA可以在平滑和非平滑案例中都可以根据弱原始二元人群风险获得最佳的效用率。据我们所知,这是在非平滑案例中DP-SGDA的第一个已知结果。我们进一步在非convex-rong-concave环境中提供了实用性分析,这是原始人口风险的首个已知结果。即使在非私有设置中,此非convex设置的收敛和概括结果也是新的。最后,进行了数值实验,以证明DP-SGDA在凸和非凸病例中的有效性。
translated by 谷歌翻译
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean 2 perturbation distance.
translated by 谷歌翻译
对抗性可转移性是一种有趣的性质 - 针对一个模型制作的对抗性扰动也是对另一个模型有效的,而这些模型来自不同的模型家庭或培训过程。为了更好地保护ML系统免受对抗性攻击,提出了几个问题:对抗性转移性的充分条件是什么,以及如何绑定它?有没有办法降低对抗的转移性,以改善合奏ML模型的鲁棒性?为了回答这些问题,在这项工作中,我们首先在理论上分析和概述了模型之间的对抗性可转移的充分条件;然后提出一种实用的算法,以减少集合内基础模型之间的可转换,以提高其鲁棒性。我们的理论分析表明,只有促进基础模型梯度之间的正交性不足以确保低可转移性;与此同时,模型平滑度是控制可转移性的重要因素。我们还在某些条件下提供了对抗性可转移性的下界和上限。灵感来自我们的理论分析,我们提出了一种有效的可转让性,减少了平滑(TRS)集合培训策略,以通过实施基础模型之间的梯度正交性和模型平滑度来培训具有低可转换性的强大集成。我们对TRS进行了广泛的实验,并与6个最先进的集合基线进行比较,防止不同数据集的8个白箱攻击,表明所提出的TRS显着优于所有基线。
translated by 谷歌翻译
在本文中,我们研究了多块最小双重双层优化问题,其中上层是非凸线的最小值最小值目标,而下层级别是一个强烈的凸目标,并且有多个双重变量块和下层级别。问题。由于交织在一起的多块最小双重双重结构,每次迭代处的计算成本可能高高,尤其是在大量块中。为了应对这一挑战,我们提出了一种单循环随机随机算法,该算法需要在每次迭代时仅恒定数量的块进行更新。在对问题的一些温和假设下,我们建立了$ \ Mathcal {o}(1/\ Epsilon^4)$的样本复杂性,用于查找$ \ epsilon $ - 稳定点。这匹配了在一般无偏见的随机甲骨文模型下求解随机非convex优化的最佳复杂性。此外,我们在多任务深度AUC(ROC曲线下)最大化和多任务深度部分AUC最大化中提供了两种应用。实验结果验证了我们的理论,并证明了我们方法对数百个任务问题的有效性。
translated by 谷歌翻译
在本文中,我们考虑基于移动普通(SEMA)的广泛使用但不完全了解随机估计器,其仅需要{\ bf是一般无偏的随机oracle}。我们展示了Sema在一系列随机非凸优化问题上的力量。特别是,我们分析了基于SEMA的SEMA的{\ BF差异递归性能的各种随机方法(现有或新提出),即三个非凸优化,即标准随机非凸起最小化,随机非凸强烈凹入最小最大优化,随机均方优化。我们的贡献包括:(i)对于标准随机非凸起最小化,我们向亚当风格方法(包括ADAM,AMSGRAD,Adabound等)提供了一个简单而直观的融合证明,随着越来越大的“势头” “一阶时刻的参数,它给出了一种替代但更自然的方式来保证亚当融合; (ii)对于随机非凸强度凹入的最小值优化,我们介绍了一种基于移动平均估计器的单环原始 - 双随机动量和自适应方法,并确定其Oracle复杂性$ O(1 / \ epsilon ^ 4)$不使用大型批量大小,解决文献中的差距; (iii)对于随机双脚优化,我们介绍了一种基于移动平均估计器的单环随机方法,并确定其Oracle复杂性$ \ widetilde o(1 / \ epsilon ^ 4)$,而无需计算Hessian矩阵的SVD,改善最先进的结果。对于所有这些问题,我们还建立了使用随机梯度估计器的差异递减结果。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译