传统上,联邦学习(FL)旨在培训单个全球模型,同时使用多个客户和服务器进行协作。 FL算法面临的两个自然挑战是跨客户的数据中的异质性以及{\ em多样性资源}客户的协作。在这项工作中,我们介绍了\ textit {量化}和\ textit {个性化} fl算法quped,通过\ textit {knowledge蒸馏}(kd)促进集体(个性化模型压缩)培训,这些客户可以访问异物质数据和资源的客户。对于个性化,我们允许客户学习\ textit {压缩个性化模型},具有不同的量化参数和模型维度/结构。为此,首先,我们提出了一种通过放松的优化问题来学习量化模型的算法,在该问题上也优化了量化值。当每个参与(联合)学习过程的客户对压缩模型(无论是模型维度还是精度)都有不同的要求时,我们通过为当地客户目标引入知识蒸馏损失来制定一个压缩个性化框架,该框架通过全球模型进行协作。我们开发了一个交替的近端梯度更新,以解决此压缩个性化问题,并分析其收敛属性。从数值上讲,我们验证了在各种异质环境中对客户的竞争性个性化方法,FedAvg和本地培训的验证。
translated by 谷歌翻译
联合学习的一个区别特征是(本地)客户数据可能具有统计异质性。这种异质性激发了个性化学习的设计,该学习是通过协作培训个人(个性化)模型的。文献中提出了各种个性化方法,似乎截然不同的形式和方法,从将单个全球模型用于本地正规化和模型插值,再到将多个全球模型用于个性化聚类等。在这项工作中,我们开始使用生成框架,可以统一几种不同的算法并暗示新算法。我们将生成框架应用于个性化的估计,并将其连接到经典的经验贝叶斯方法。我们在此框架下制定私人个性化估计。然后,我们将生成框架用于学习,该框架统一了几种已知的个性化FL算法,并提出了新算法。我们建议并研究一种基于知识蒸馏的新算法,该算法的数值优于几种已知算法。我们还为个性化学习方法开发隐私,并保证用户级的隐私和组成。我们通过数值评估估计和学习问题的性能以及隐私,证明了我们提出的方法的优势。
translated by 谷歌翻译
联合学习(FL)是一种机器学习范式,可从仍在设备上的分散数据中分发机器学习模型。尽管标准联合优化方法取得了成功,例如FL中的联邦平均(FedAvg),但在文献中,能源需求和硬件诱导的限制因素尚未得到足够的考虑。具体而言,对设备学习的基本需求是,根据整个联邦的能源需求和异质硬件设计,可以将经过训练的模型量化为各种位宽度。在这项工作中,我们介绍了多种联邦平均算法的多种变体,这些算法训练神经网络可靠地进行量化。这样的网络可以量化为各种位宽度,只有有限的精确模型精度降低有限。我们对标准FL基准测试进行了广泛的实验,以评估我们提出的FedAvg变体以量化稳健性,并为我们的fl中的量化变体提供收敛分析。我们的结果表明,整合量化鲁棒性会导致在量化的在设备推断期间,对不同的位宽度明显更健壮的FL模型。
translated by 谷歌翻译
联合学习(FL)是一种在不获取客户私有数据的情况下培训全球模型的协同机器学习技术。 FL的主要挑战是客户之间的统计多样性,客户设备之间的计算能力有限,以及服务器和客户之间的过度沟通开销。为解决这些挑战,我们提出了一种通过最大化FEDMAC的相关性稀疏个性化联合学习计划。通过将近似的L1-norm和客户端模型与全局模型之间的相关性结合到标准流失函数中,提高了统计分集数据的性能,并且与非稀疏FL相比,网络所需的通信和计算负载减少。收敛分析表明,FEDMAC中的稀疏约束不会影响全球模型的收敛速度,理论结果表明,FEDMAC可以实现良好的稀疏个性化,这比基于L2-NOM的个性化方法更好。实验,我们展示了与最先进的个性化方法相比的这种稀疏个性化建筑的益处(例如,FEDMAC分别达到98.95%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,99.37%,高精度,FMNIST,CIFAR-100和非IID变体下的合成数据集)。
translated by 谷歌翻译
In federated optimization, heterogeneity in the clients' local datasets and computation speeds results in large variations in the number of local updates performed by each client in each communication round. Naive weighted aggregation of such models causes objective inconsistency, that is, the global model converges to a stationary point of a mismatched objective function which can be arbitrarily different from the true objective. This paper provides a general framework to analyze the convergence of federated heterogeneous optimization algorithms. It subsumes previously proposed methods such as FedAvg and FedProx and provides the first principled understanding of the solution bias and the convergence slowdown due to objective inconsistency. Using insights from this analysis, we propose Fed-Nova, a normalized averaging method that eliminates objective inconsistency while preserving fast error convergence.
translated by 谷歌翻译
标准联合优化方法成功地适用于单层结构的随机问题。然而,许多当代的ML问题 - 包括对抗性鲁棒性,超参数调整和参与者 - 批判性 - 属于嵌套的双层编程,这些编程包含微型型和组成优化。在这项工作中,我们提出了\ fedblo:一种联合交替的随机梯度方法来解决一般的嵌套问题。我们在存在异质数据的情况下为\ fedblo建立了可证明的收敛速率,并引入了二聚体,最小值和组成优化的变化。\ fedblo引入了多种创新,包括联邦高级计算和降低方差,以解决内部级别的异质性。我们通过有关超参数\&超代理学习和最小值优化的实验来补充我们的理论,以证明我们方法在实践中的好处。代码可在https://github.com/ucr-optml/fednest上找到。
translated by 谷歌翻译
近年来,个性化联邦学习(PFL)引起了越来越关注其在客户之间处理统计异质性的潜力。然而,最先进的PFL方法依赖于服务器端的模型参数聚合,这需要所有模型具有相同的结构和大小,因此限制了应用程序以实现更多异构场景。要处理此类模型限制,我们利用异构模型设置的潜力,并提出了一种新颖的培训框架,为不同客户使用个性化模型。具体而言,我们将原始PFL中的聚合过程分为个性化组知识转移训练算法,即KT-PFL,这使得每个客户端能够在服务器端维护个性化软预测以指导其他人的本地培训。 KT-PFL通过使用知识系数矩阵的所有本地软预测的线性组合更新每个客户端的个性化软预测,这可以自适应地加强拥有类似数据分布的客户端之间的协作。此外,为了量化每个客户对他人的个性化培训的贡献,知识系数矩阵是参数化的,以便可以与模型同时培训。知识系数矩阵和模型参数在每轮梯度下降方式之后的每一轮中可替代地更新。在不同的设置(异构模型和数据分布)下进行各种数据集(EMNIST,Fashion \ _Mnist,CIFAR-10)的广泛实验。据证明,所提出的框架是第一个通过参数化群体知识转移实现个性化模型培训的联邦学习范例,同时实现与最先进的算法比较的显着性能增益。
translated by 谷歌翻译
Federated learning (FL) is a decentralized and privacy-preserving machine learning technique in which a group of clients collaborate with a server to learn a global model without sharing clients' data. One challenge associated with FL is statistical diversity among clients, which restricts the global model from delivering good performance on each client's task. To address this, we propose an algorithm for personalized FL (pFedMe) using Moreau envelopes as clients' regularized loss functions, which help decouple personalized model optimization from the global model learning in a bi-level problem stylized for personalized FL. Theoretically, we show that pFedMe's convergence rate is state-of-the-art: achieving quadratic speedup for strongly convex and sublinear speedup of order 2/3 for smooth nonconvex objectives. Experimentally, we verify that pFedMe excels at empirical performance compared with the vanilla FedAvg and Per-FedAvg, a meta-learning based personalized FL algorithm.
translated by 谷歌翻译
我们提出了一个新颖的框架,以研究异步联合学习优化,并在梯度更新中延迟。我们的理论框架通过引入随机聚合权重来表示客户更新时间的可变性,从而扩展了标准的FedAvg聚合方案,例如异质硬件功能。我们的形式主义适用于客户具有异质数据集并至少执行随机梯度下降(SGD)的一步。我们证明了这种方案的收敛性,并为相关最小值提供了足够的条件,使其成为联邦问题的最佳选择。我们表明,我们的一般框架适用于现有的优化方案,包括集中学习,FedAvg,异步FedAvg和FedBuff。这里提供的理论允许绘制有意义的指南,以设计在异质条件下的联合学习实验。特别是,我们在这项工作中开发了FedFix,这是FedAvg的新型扩展,从而实现了有效的异步联合训练,同时保留了同步聚合的收敛稳定性。我们在一系列实验上凭经验证明了我们的理论,表明异步FedAvg以稳定性为代价导致快速收敛,我们最终证明了FedFix比同步和异步FedAvg的改善。
translated by 谷歌翻译
数据异构联合学习(FL)系统遭受了两个重要的收敛误差来源:1)客户漂移错误是由于在客户端执行多个局部优化步骤而引起的,以及2)部分客户参与错误,这是一个事实,仅一小部分子集边缘客户参加每轮培训。我们发现其中,只有前者在文献中受到了极大的关注。为了解决这个问题,我们提出了FedVarp,这是在服务器上应用的一种新颖的差异算法,它消除了由于部分客户参与而导致的错误。为此,服务器只是将每个客户端的最新更新保持在内存中,并将其用作每回合中非参与客户的替代更新。此外,为了减轻服务器上的内存需求,我们提出了一种新颖的基于聚类的方差降低算法clusterfedvarp。与以前提出的方法不同,FedVarp和ClusterFedVarp均不需要在客户端上进行其他计算或其他优化参数的通信。通过广泛的实验,我们表明FedVarp优于最先进的方法,而ClusterFedVarp实现了与FedVarp相当的性能,并且记忆要求较少。
translated by 谷歌翻译
The increasing size of data generated by smartphones and IoT devices motivated the development of Federated Learning (FL), a framework for on-device collaborative training of machine learning models. First efforts in FL focused on learning a single global model with good average performance across clients, but the global model may be arbitrarily bad for a given client, due to the inherent heterogeneity of local data distributions. Federated multi-task learning (MTL) approaches can learn personalized models by formulating an opportune penalized optimization problem. The penalization term can capture complex relations among personalized models, but eschews clear statistical assumptions about local data distributions. In this work, we propose to study federated MTL under the flexible assumption that each local data distribution is a mixture of unknown underlying distributions. This assumption encompasses most of the existing personalized FL approaches and leads to federated EM-like algorithms for both client-server and fully decentralized settings. Moreover, it provides a principled way to serve personalized models to clients not seen at training time. The algorithms' convergence is analyzed through a novel federated surrogate optimization framework, which can be of general interest. Experimental results on FL benchmarks show that our approach provides models with higher accuracy and fairness than state-of-the-art methods.
translated by 谷歌翻译
Federated learning allows collaborative workers to solve a machine learning problem while preserving data privacy. Recent studies have tackled various challenges in federated learning, but the joint optimization of communication overhead, learning reliability, and deployment efficiency is still an open problem. To this end, we propose a new scheme named federated learning via plurality vote (FedVote). In each communication round of FedVote, workers transmit binary or ternary weights to the server with low communication overhead. The model parameters are aggregated via weighted voting to enhance the resilience against Byzantine attacks. When deployed for inference, the model with binary or ternary weights is resource-friendly to edge devices. We show that our proposed method can reduce quantization error and converges faster compared with the methods directly quantizing the model updates.
translated by 谷歌翻译
我们展示了一个联合学习框架,旨在强大地提供具有异构数据的各个客户端的良好预测性能。所提出的方法对基于SuperQualile的学习目标铰接,捕获异构客户端的误差分布的尾统计。我们提出了一种随机训练算法,其与联合平均步骤交织差异私人客户重新重量步骤。该提出的算法支持有限时间收敛保证,保证覆盖凸和非凸面设置。关于联邦学习的基准数据集的实验结果表明,我们的方法在平均误差方面与古典误差竞争,并且在误差的尾统计方面优于它们。
translated by 谷歌翻译
客户端之间的非独立和相同分布(非IID)数据分布被视为降低联合学习(FL)性能的关键因素。处理非IID数据(如个性化FL和联邦多任务学习(FMTL)的几种方法对研究社区有很大兴趣。在这项工作中,首先,我们使用Laplacian正规化制定FMTL问题,明确地利用客户模型之间的关系进行多任务学习。然后,我们介绍了FMTL问题的新视图,首次表明配制的FMTL问题可用于传统的FL和个性化FL。我们还提出了两种算法FEDU和DFEDU,分别解决了通信集中和分散方案中的配制FMTL问题。从理论上讲,我们证明了两种算法的收敛速率实现了用于非凸起目标的强大凸起和载位加速的线性加速。实验,我们表明我们的算法优于FL设置的传统算法FedVG,在FMTL设置中的Mocha,以及个性化流程中的PFEDME和PER-FEDAVG。
translated by 谷歌翻译
在这项工作中,我们提出了FedSSO,这是一种用于联合学习的服务器端二阶优化方法(FL)。与以前朝这个方向的工作相反,我们在准牛顿方法中采用了服务器端近似,而无需客户的任何培训数据。通过这种方式,我们不仅将计算负担从客户端转移到服务器,而且还消除了客户和服务器之间二阶更新的附加通信。我们为我们的新方法的收敛提供了理论保证,并从经验上证明了我们在凸面和非凸面设置中的快速收敛和沟通节省。
translated by 谷歌翻译
As a novel distributed learning paradigm, federated learning (FL) faces serious challenges in dealing with massive clients with heterogeneous data distribution and computation and communication resources. Various client-variance-reduction schemes and client sampling strategies have been respectively introduced to improve the robustness of FL. Among others, primal-dual algorithms such as the alternating direction of method multipliers (ADMM) have been found being resilient to data distribution and outperform most of the primal-only FL algorithms. However, the reason behind remains a mystery still. In this paper, we firstly reveal the fact that the federated ADMM is essentially a client-variance-reduced algorithm. While this explains the inherent robustness of federated ADMM, the vanilla version of it lacks the ability to be adaptive to the degree of client heterogeneity. Besides, the global model at the server under client sampling is biased which slows down the practical convergence. To go beyond ADMM, we propose a novel primal-dual FL algorithm, termed FedVRA, that allows one to adaptively control the variance-reduction level and biasness of the global model. In addition, FedVRA unifies several representative FL algorithms in the sense that they are either special instances of FedVRA or are close to it. Extensions of FedVRA to semi/un-supervised learning are also presented. Experiments based on (semi-)supervised image classification tasks demonstrate superiority of FedVRA over the existing schemes in learning scenarios with massive heterogeneous clients and client sampling.
translated by 谷歌翻译
由于客户端之间标签不平衡的普遍性,联邦对抗域适应是一种独特的分布式Minimax培训任务,每个客户端只看到培训全局模型所需的标签类的子集。为了解决这个问题,我们提出了一个分布式Minimax优化器,称为FEDMM,专为联邦对抗域适应问题而设计。即使在每个客户端具有不同的标签类,某些客户端只有无监督的任务,它也运作良好。我们证明了FEDMM确保将达到域移位无监督数据的静止点收敛。在各种基准数据集中,广泛的实验表明,基于梯度下降升降算法例如,当从头划伤训练时,它以相同的通信回合占据了其他基于GDA的联合平均方法的准确性约为20%;当从预先训练的模型培训时,它始终如一地优于不同网络的5.4 \%$ 9 \%$ 9 \%$。
translated by 谷歌翻译
在联合学习(FL)中,通过跨设备的模型更新进行合作学习全球模型的目的倾向于通过本地信息反对个性化的目标。在这项工作中,我们通过基于多准则优化的框架以定量的方式校准了这一权衡,我们将其作为一个受约束的程序进行了:设备的目标是其本地目标,它试图最大程度地减少在满足非线性约束的同时,以使其满足非线性约束,这些目标是其本地目标。量化本地模型和全局模型之间的接近度。通过考虑该问题的拉格朗日放松,我们开发了一种算法,该算法允许每个节点通过查询到一阶梯度Oracle将其Lagrangian的本地组件最小化。然后,服务器执行Lagrange乘法器上升步骤,然后进行Lagrange乘法器加权步骤。我们称这种实例化的原始偶对方法是联合学习超出共识($ \ texttt {fedBc} $)的实例。从理论上讲,我们确定$ \ texttt {fedBc} $以与最算好状态相匹配的速率收敛到一阶固定点,直到额外的错误项,取决于由于接近性约束而产生的公差参数。总体而言,该分析是针对非凸鞍点问题的原始偶对偶的方法的新颖表征。最后,我们证明了$ \ texttt {fedBc} $平衡了整个数据集(合成,MNIST,CIFAR-10,莎士比亚)的全球和本地模型测试精度指标,从而与艺术现状达到了竞争性能。
translated by 谷歌翻译
从经验上证明,在跨客户聚集之前应用多个本地更新的实践是克服联合学习(FL)中的通信瓶颈的成功方法。在这项工作中,我们提出了一种通用食谱,即FedShuffle,可以更好地利用FL中的本地更新,尤其是在异质性方面。与许多先前的作品不同,FedShuffle在每个设备的更新数量上没有任何统一性。我们的FedShuffle食谱包括四种简单的功能成分:1)数据的本地改组,2)调整本地学习率,3)更新加权,4)减少动量方差(Cutkosky and Orabona,2019年)。我们对FedShuffle进行了全面的理论分析,并表明从理论和经验上讲,我们的方法都不遭受FL方法中存在的目标功能不匹配的障碍,这些方法假设在异质FL设置中,例如FedAvg(McMahan等人,McMahan等, 2017)。此外,通过将上面的成分结合起来,FedShuffle在Fednova上改善(Wang等,2020),以前提议解决此不匹配。我们还表明,在Hessian相似性假设下,通过降低动量方差的FedShuffle可以改善非本地方法。最后,通过对合成和现实世界数据集的实验,我们说明了FedShuffle中使用的四种成分中的每种如何有助于改善FL中局部更新的使用。
translated by 谷歌翻译
Federated Learning是一种机器学习培训范式,它使客户能够共同培训模型而无需共享自己的本地化数据。但是,实践中联合学习的实施仍然面临许多挑战,例如由于重复的服务器 - 客户同步以及基于SGD的模型更新缺乏适应性,大型通信开销。尽管已经提出了各种方法来通过梯度压缩或量化来降低通信成本,并且提出了联合版本的自适应优化器(例如FedAdam)来增加适应性,目前的联合学习框架仍然无法立即解决上述挑战。在本文中,我们提出了一种具有理论融合保证的新型沟通自适应联合学习方法(FedCAMS)。我们表明,在非convex随机优化设置中,我们提出的fedcams的收敛率与$ o(\ frac {1} {\ sqrt {tkm}})$与其非压缩的对应物相同。各种基准的广泛实验验证了我们的理论分析。
translated by 谷歌翻译