这项工作描述了Push,这是一种原始的启发式,结合了可行性泵和转移。主要思想是通过适当的转移和其他圆形启发式方法来代替可行性泵的圆形阶段。该算法提出了不同的策略,具体取决于获得的部分舍入的性质。特别是,我们区分何时可行的部分解决方案,与潜在候选者不可行,而没有候选者不可行。我们使用阈值指示使用算法将变量的百分比,以及将其四舍五入到最近的整数中。最重要的是,我们的算法直接处理平等约束而无需复制行。我们在为2022的MIP竞赛中选择了算法的参数。最后,我们将我们的方法与其他开始启发式方法进行了比较,例如第一个800 MIPLIB2017实例在数量下订购的简单圆形,圆形,舍入和可行性泵非零件。
translated by 谷歌翻译
最近已扩展了最小方形聚类(MSSC)或K-均值类型聚类的最小总和,以利用每个群集的基数的先验知识。这种知识用于提高性能以及解决方案质量。在本文中,我们提出了一种基于分支和切割技术的精确方法,以解决基数受限的MSSC。对于下边界的例程,我们使用Rujeerapaiboon等人最近提出的半决赛编程(SDP)放松。 [Siam J. Optim。 29(2),1211-1239,(2019)]。但是,这种放松只能用于小型实例中的分支和切割方法。因此,我们得出了一种新的SDP松弛,该松弛随着实例大小和簇的数量更好。在这两种情况下,我们都通过添加多面体切割来增强结合。从量身定制的分支策略中受益,该策略会实施成对的约束,我们减少了儿童节点中出现的问题的复杂性。相反,对于上限,我们提出了一个本地搜索过程,该过程利用在每个节点上求解的SDP松弛的解。计算结果表明,所提出的算法在全球范围内首次求解了大小的现实实例,比通过最新精确方法求解的算法大10倍。
translated by 谷歌翻译
最小的平方和群集(MSSC)或K-Means型聚类,传统上被认为是无监督的学习任务。近年来,使用背景知识来提高集群质量,促进聚类过程的可解释性已成为数学优化和机器学习研究的热门研究课题。利用数据群集中的背景信息的问题称为半监督或约束群集。在本文中,我们为半监控MSSC提供了一种新的分支和绑定算法,其中背景知识被包含为成对必须 - 链接和无法链接约束。对于较低的界限,我们解决了MSSC离散优化模型的Semidefinite编程宽松,并使用了用于加强界限的纤维平面程序。相反,通过使用整数编程工具,我们提出了将K-Means算法适应受约束的情况。这是第一次,所提出的全局优化算法有效地管理,以解决现实世界的情况,最高可达800个数据点,具有必要的必须 - 链接和无法链接约束以及通用数量的功能。这个问题大小大约比最先进的精确算法解决的实例大约四倍。
translated by 谷歌翻译
我们为2022年MIP竞争开发的混合整数程序(MIP)提供了一个求解器。鉴于竞争规则确定的计算时间限制了10分钟,我们的方法着重于找到可行的解决方案,并通过分支机构进行改进 - 和结合算法。竞争的另一个规则允许最多使用8个线程。为每个线程提供了不同的原始启发式,该启发式是通过超参数调整的,以找到可行的解决方案。在每个线程中,一旦找到了可行的解决方案,我们就会停止,然后使用嵌入本地搜索启发式方法的分支和结合方法来改善现有解决方案。我们实施的潜水启发式方法的三种变体设法为培训数据集的10个实例找到了可行的解决方案。这些启发式方法是我们实施的启发式方法中表现最好的。我们的分支机构和结合算法在培训数据集的一小部分中有效,并且它设法找到了一个可行的解决方案,以解决我们无法通过潜水启发式方法解决的实例。总体而言,当用广泛的计算能力实施时,我们的组合方法可以在时间限制内解决训练数据集的19个问题中的11个。我们对MIP竞赛的提交被授予“杰出学生提交”荣誉奖。
translated by 谷歌翻译
SemideFinite编程(SDP)是一个统一的框架,可以概括线性编程和四二次二次编程,同时在理论和实践中也产生有效的求解器。但是,当覆盖SDP的约束以在线方式到达时,存在近似最佳解决方案的已知结果。在本文中,我们研究了在线涵盖线性和半决赛程序,其中通过可能错误的预测指标的建议增强了算法。我们表明,如果预测变量是准确的,我们可以有效地绕过这些不可能的结果,并在最佳解决方案(即一致性)上实现恒定因素近似值。另一方面,如果预测变量不准确,在某些技术条件下,我们取得的结果既匹配经典的最佳上限和紧密的下限,则达到恒定因素,即稳健性。更广泛地,我们引入了一个框架,该框架既扩展了(1)由Bamas,Maggiori和Svensson(Neurips 2020)研究的机器学习预测变量增加的在线套装问题,以及(2)在线覆盖SDP问题,由SDP问题发起。 Elad,Kale和Naor(ICALP 2016)。具体而言,我们获得了一般的在线学习算法,用于涵盖具有分数建议和约束的线性程序,并启动学习启发算法以涵盖SDP问题的研究。我们的技术基于Buchbinder和NAOR的原始二次框架(操作研究的数学,34,2009),并且可以进一步调整以处理变量位于有限区域的约束,即框约束。
translated by 谷歌翻译
切割选择是所有现代混合企业线性编程求解器中使用的子例程,其目标是选择诱导最佳求解器性能的生成的切割子集。这些求解器具有数百万个参数组合,因此是参数调整的出色候选者。剪切选择评分规则通常是权重是参数的不同测量值的加权总和。我们提出了一个混合企业线性程序的参数家族,以及无限许多家庭范围的有效削减。这些切割中的一些可以在应用后直接诱导整数最佳解决方案,而另一些剪切也无法诱导整数,即使应用了无限量。我们为特定的剪切选择规则显示,对参数空间的任何有限网格搜索都将始终错过所有参数值,这些参数值选择了无限量的我们的问题。我们提出了现有图形卷积神经网络设计的变体,以适应它们以学习切割选择规则参数。我们提出了选择削减的强化学习框架,并使用Miplib 2017上的上述框架训练我们的设计。我们的框架和设计表明,自适应切割选择确实在各种实例上确实提高了性能,但是找到一个描述这样一个功能的功能规则很困难。复制所有实验的代码可在https://github.com/opt-mucca/adaptive-cutsel-milp上获得。
translated by 谷歌翻译
在这项工作中,我们提出了基于水平的学习群优化器(LLSO)的混合变体,用于解决大规模投资组合优化问题。我们的目标是最大程度地提高夏普比率的改良配方,但要受到基数,框和预算限制的影响。该算法涉及一个投影操作员同时处理这三个约束,并且由于重新平衡的约束,我们隐式控制交易成本。我们还引入了合适的确切惩罚功能来管理营业额约束。此外,我们开发了一个临时突变操作员,以在最高水平的群体中修改候选示例。实验结果使用三个大规模数据集,表明该过程的包含提高了解决方案的准确性。然后,与LLSO算法的其他变体和两种最先进的群体优化器进行了比较,指出了拟议求解器在勘探能力和溶液质量方面的出色性能。最后,我们使用MSCI世界指数的1119个成分的可投资库评估了过去五年中投资组合分配策略的盈利能力。
translated by 谷歌翻译
给定数据点之间的一组差异测量值,确定哪种度量表示与输入测量最“一致”或最能捕获数据相关几何特征的度量是许多机器学习算法的关键步骤。现有方法仅限于特定类型的指标或小问题大小,因为在此类问题中有大量的度量约束。在本文中,我们提供了一种活跃的集合算法,即项目和忘记,该算法使用Bregman的预测,以解决许多(可能是指数)不平等约束的度量约束问题。我们提供了\ textsc {project and Hoses}的理论分析,并证明我们的算法会收敛到全局最佳解决方案,并以指数速率渐近地渐近地衰减了当前迭代的$ L_2 $距离。我们证明,使用我们的方法,我们可以解决三种类型的度量约束问题的大型问题实例:一般体重相关聚类,度量近距离和度量学习;在每种情况下,就CPU时间和问题尺寸而言,超越了艺术方法的表现。
translated by 谷歌翻译
这项工作解决了逆线优化,其中目标是推断线性程序的未知成本向量。具体地,我们考虑数据驱动的设置,其中可用数据是对应于线性程序的不同实例的最佳解决方案的嘈杂的观察。我们介绍了一个问题的新配方,与其他现有方法相比,允许恢复较少的限制性和一般更适当的可允许成本估算。可以表明,该逆优化问题产生有限数量的解决方案,并且我们开发了一个精确的两相算法来确定所有此类解决方案。此外,我们提出了一种有效的分解算法来解决问题的大实例。该算法自然地扩展到在线学习环境,可以用于提供成本估计的快速更新,因为新数据随着时间的推移可用。对于在线设置,我们进一步开发了一种有效的自适应采样策略,指导下一个样本的选择。所提出的方法的功效在涉及两种应用,客户偏好学习和生产计划的成本估算的计算实验中进行了证明。结果表明计算和采样努力的显着减少。
translated by 谷歌翻译
符合使用机器学习的不断增长的趋势,帮助解决组合优化问题,一个有希望的想法是通过使用学习的策略来改善混合整数编程(MIP)分支和绑定树内的节点选择。以前使用模仿学习的工作指示通过学习自适应节点搜索顺序来获取节点选择策略的可行性。相比之下,我们的模仿学习策略仅专注于学习节点的孩子中的哪一个选择。我们介绍了一个脱机方法,用于在两个设置中学习这样的策略:一个通过致力于修剪节点的启发式;一个是从叶子精确和背溯以保证找到最佳整数解决方案的备用。前一个设置对应于困扰期间的儿童选择器,而后者则类似于潜水启发式。我们在热情和确切的设置中将策略应用于流行的开源求解器SCIP。五个MIP数据集的经验结果表明,我们的节点选择策略比文献中最先进的先例更快地导致解决方案。虽然我们在精确解决方案的时间内没有击败高度优化的SCIP状态基准节点选择器,但如果预测模型的准确性足够,我们的启发式政策比所有基线都具有始终如一的最佳最优性差距。此外,结果还表明,当应用时间限制时,我们的启发式方法发现比测试大多数问题中所有基线的更好的解决方案。我们通过表明学习的政策模仿了SCIP基线来解释结果,但没有后者早期的暴跌中止。我们的建议是,尽管对文献的清晰改进,但这种MIP儿童选择器在更广泛的方法中更好地使用MIP分支和束缚树决策。
translated by 谷歌翻译
加权CSP(WCSP)的重新定义(WCSP)的重新定位概念(也称为WCSPS的等价 - 保存的变换)是众所周知的并且在许多算法中找到其使用以近似或绑定最佳WCSP值。相比之下,已经提出了超级reparamureIzations的概念(这是保留或增加每个任务的WCSP目标的权重的变化),但从未详细研究过。为了填补这一差距,我们展示了一些超级reparamizations的理论属性,并将它们与重新定位化的差异进行比较。此外,我们提出了一种用于使用超级Reparamizations计算(最大化版本)WCSP的最佳值的上限的框架。我们表明原则上可以采用任意(在某些技术条件下)约束传播规则来改善绑定。特别是对于电弧一致性,该方法减少到已知的虚拟AC(VAC)算法。新的,我们实施了Singleton ARC一致性(SAC)的方法,并将其与WCSPS在公共基准上的其他强大局部常量进行比较。结果表明,从SAC获得的界限对于许多实例组优越。
translated by 谷歌翻译
由于固有的DNN预测误差,确保解决方案可行性是开发用于解决受约束优化问题的深度神经网络(DNN)方案的关键挑战。在本文中,我们提出了一种“预防性学习”的框架,以系统地保证DNN解决方案可行性的凸起约束和一般客观函数的问题。我们首先应用预测和重建设计,不仅保证平等约束,还可以利用它们来减少DNN预测的变量的数量。然后,作为关键方法贡献,我们系统地校准了DNN训练中使用的不等式约束,从而预测预测误差并确保所得到的解决方案仍然可行。我们表征校准量大和DNN尺寸,足以确保通用可行性。我们提出了一种新的敌对样本意识到培训算法,以改善DNN的最优性能而不牺牲可行性保证。总的来说,该框架提供了两个DNN。表征足够的DNN大小的第一个可以保证通用可行性,而来自所提出的培训算法的另一个进一步提高了最优性并同时保持DNN的通用可行性。我们应用预防性学习框架来开发Deepopf +,以解决网格运行中的基本DC最佳功率流量问题。它在确保在轻负载和重载制度中的可行性和获得一致的理想加速性能时,它可以改善现有的基于DNN的方案。仿真结果对IEEE案例-30 / 118/300测试用例显示DeepoPF +与最优性损失的最优损失和最高幅度计算加速度为100 \%$ 0.5%的可行解决方案,相比之下艺术迭代求解器。
translated by 谷歌翻译
We study iterative methods for (two-stage) robust combinatorial optimization problems with discrete uncertainty. We propose a machine-learning-based heuristic to determine starting scenarios that provide strong lower bounds. To this end, we design dimension-independent features and train a Random Forest Classifier on small-dimensional instances. Experiments show that our method improves the solution process for larger instances than contained in the training set and also provides a feature importance-score which gives insights into the role of scenario properties.
translated by 谷歌翻译
This paper surveys the recent attempts, both from the machine learning and operations research communities, at leveraging machine learning to solve combinatorial optimization problems. Given the hard nature of these problems, state-of-the-art algorithms rely on handcrafted heuristics for making decisions that are otherwise too expensive to compute or mathematically not well defined. Thus, machine learning looks like a natural candidate to make such decisions in a more principled and optimized way. We advocate for pushing further the integration of machine learning and combinatorial optimization and detail a methodology to do so. A main point of the paper is seeing generic optimization problems as data points and inquiring what is the relevant distribution of problems to use for learning on a given task.
translated by 谷歌翻译
识别变量之间的原因关系是决策过程的关键步骤。虽然因果推断需要随机实验,但研究人员和政策制定者越来越多地利用观测研究由于观察数据的广泛可用性和实验的不可行性而导致的因果假设。匹配方法是对观察数据进行因果推断的最常用技术。然而,由于实验者制造的不同选择,一对一匹配中的对分配过程在推论中产生不确定性。最近,提出了离散优化模型来解决这种不确定性。虽然具有离散优化模型可能的强大推断,但它们产生非线性问题并缺乏可扩展性。在这项工作中,我们提出了贪婪的算法来解决与持续结果的观测数据的强大因果推断测试实例。我们提出了一个独特的框架,可以重新设计非线性二进制优化问题作为可行性问题。通过利用可行性制定的结构,我们开发贪婪方案,以求解稳健的测试问题。在许多情况下,所提出的算法实现全球最佳解决方案。我们在三个现实世界数据集上执行实验,以展示所提出的算法的有效性,并将我们的结果与最先进的求解器进行比较。我们的实验表明,所提出的算法在计算时间方面显着优于精确的方法,同时实现了同样的因果试验结论。两个数值实验和复杂性分析都表明所提出的算法确保在决策过程中利用大数据的力量所需的可扩展性。
translated by 谷歌翻译
切割平面对于解决混合企业线性问题(MILP)至关重要,因为它们促进了最佳解决方案值的界限。为了选择切割,现代求解器依靠手动设计的启发式方法来评估切割的潜在有效性。我们表明,一项贪婪的选择规则明确地寻求选择的剪裁,从而产生最佳的界限可以为切割选择提供强大的决策 - 但太贵了,无法在实践中部署。作为回应,我们提出了一种新的神经体系结构(神经曲),以模仿LookAhead专家。我们的模型优于标准基准,用于在几个合成的MILP基准上进行切割选择。使用B&C求解器进行神经网络验证的实验进一步验证了我们的方法,并在这种情况下展示了学习方法的潜力。
translated by 谷歌翻译
Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.
translated by 谷歌翻译
由于其损耗函数的无限性,经典的铰链损耗支撑矢量机(SVM)模型对异常观测值敏感。为了解决这个问题,最近的研究集中在非凸损失函数上,例如硬质量损失,该损失将恒定的罚款与任何错误分类或细边样品内的样本相关联。应用此损失函数可为关键应用带来急需的鲁棒性,但它也导致NP硬化模型,这使训练变得困难,因为当前的精确优化算法显示有限的可伸缩性,而启发式方法无法始终找到高质量的解决方案。在这种背景下,我们提出了新的整数编程策略,这些策略可显着提高我们将硬利润SVM模型培训为全球最优性的能力。我们引入了一种迭代采样和分解方法,其中使用较小的子问题来分离组合弯曲器的切割。这些切割量在分支和切割算法中的使用,可以更快地收敛到全球最佳。通过对经典基准数据集的大量数值分析,我们的解决方案算法首次求解了117个新数据集,以达到最佳性,并在基准最困难的数据集的平均最佳差距中降低了50%。
translated by 谷歌翻译
\ textit {约束路径发现}的经典问题是一个经过充分研究但充满挑战的主题,在各个领域,例如沟通和运输等各个领域的应用。权重限制了最短路径问题(WCSPP),作为仅具有一个侧面约束的约束路径查找的基本形式,旨在计划成本最佳路径,其权重/资源使用受到限制。鉴于问题的双标准性质(即处理路径的成本和权重),解决WCSPP的方法具有一些带有双目标搜索的共同属性。本文在约束路径查找和双目标搜索中利用了最新的基于A*的最新技术,并为WCSPP提供了两种精确的解决方案方法,两者都可以在非常大的图表上解决硬性问题实例。我们从经验上评估了算法在新的大型和现实的问题实例上的性能,并在时空指标中显示出它们比最新算法的优势。本文还调查了优先级队列在被a*的约束搜索中的重要性。我们通过对逼真的和随机图进行了广泛的实验来展示,基于桶的队列没有打破打盘的方式可以有效地改善详尽的双标准搜索的算法性能。
translated by 谷歌翻译
Large Neighborhood Search (LNS) is a popular heuristic algorithm for solving combinatorial optimization problems (COP). It starts with an initial solution to the problem and iteratively improves it by searching a large neighborhood around the current best solution. LNS relies on heuristics to select neighborhoods to search in. In this paper, we focus on designing effective and efficient heuristics in LNS for integer linear programs (ILP) since a wide range of COPs can be represented as ILPs. Local Branching (LB) is a heuristic that selects the neighborhood that leads to the largest improvement over the current solution in each iteration of LNS. LB is often slow since it needs to solve an ILP of the same size as input. Our proposed heuristics, LB-RELAX and its variants, use the linear programming relaxation of LB to select neighborhoods. Empirically, LB-RELAX and its variants compute as effective neighborhoods as LB but run faster. They achieve state-of-the-art anytime performance on several ILP benchmarks.
translated by 谷歌翻译