不确定性遍及现代机器人自主堆栈,几乎每个组件(例如传感器,检测,分类,跟踪,行为预测)产生连续或离散的概率分布。尤其是,轨迹预测被不确定性所包围,因为其输入是由(嘈杂)上游感知产生的,并且其输出是通常用于下游计划中的概率的预测。但是,大多数轨迹预测方法并不能说明上游的不确定性,而仅考虑最明显的值。结果,感知不确定性不会通过预测传播,并且预测通常过于自信。为了解决这个问题,我们提出了一种在轨迹预测中纳入感知状态不确定性的新方法,其关键组成部分是一种新的基于统计距离的损失函数,它鼓励预测不确定性,以更好地匹配上游感知。我们在说明性模拟和大规模的现实世界数据中评估了我们的方法,证明了它在通过预测和产生更校准的预测来传播感知状态不确定性方面的功效。
translated by 谷歌翻译
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation. As a result, multi-agent behavior prediction has become a core component of modern human-robot interactive systems, such as self-driving cars. While there exist many methods for trajectory forecasting, most do not enforce dynamic constraints and do not account for environmental information (e.g., maps). Towards this end, we present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). Trajectron++ is designed to be tightly integrated with robotic planning and control frameworks; for example, it can produce predictions that are optionally conditioned on ego-agent motion plans. We demonstrate its performance on several challenging real-world trajectory forecasting datasets, outperforming a wide array of state-ofthe-art deterministic and generative methods.
translated by 谷歌翻译
基于学习的行为预测方法越来越多地被部署在现实世界的自治系统中,例如,在全球主要城市的自动驾驶汽车舰队中开始商业运营。但是,尽管有进步,但绝大多数预测系统专门针对一组经过验证的地理区域或操作设计领域,使部署到其他城市,国家或大陆。为此,我们提出了一种新颖的方法,可以有效地将行为预测模型适应新环境。我们的方法利用了元学习的最新进展,特别是贝叶斯回归,以使用自适应层增强现有的行为预测模型,该模型可以通过离线微调,在线适应或两者兼而有之有效的域传输。多个现实世界数据集的实验表明,我们的方法可以有效地适应各种看不见的环境。
translated by 谷歌翻译
仿真是对机器人系统(例如自动驾驶汽车)进行扩展验证和验证的关键。尽管高保真物理和传感器模拟取得了进步,但在模拟道路使用者的现实行为方面仍然存在一个危险的差距。这是因为,与模拟物理和图形不同,设计人类行为的第一个原理模型通常是不可行的。在这项工作中,我们采用了一种数据驱动的方法,并提出了一种可以学会从现实世界驱动日志中产生流量行为的方法。该方法通过将交通仿真问题分解为高级意图推理和低级驾驶行为模仿,通过利用驾驶行为的双层层次结构来实现高样本效率和行为多样性。该方法还结合了一个计划模块,以获得稳定的长马行为。我们从经验上验证了我们的方法,即交通模拟(位)的双层模仿,并具有来自两个大规模驾驶数据集的场景,并表明位表明,在现实主义,多样性和长途稳定性方面可以达到平衡的交通模拟性能。我们还探索了评估行为现实主义的方法,并引入了一套评估指标以进行交通模拟。最后,作为我们的核心贡献的一部分,我们开发和开源一个软件工具,该工具将跨不同驱动数据集的数据格式统一,并将现有数据集将场景转换为交互式仿真环境。有关其他信息和视频,请参见https://sites.google.com/view/nvr-bits2022/home
translated by 谷歌翻译
从社交机器人到自动驾驶汽车,多种代理的运动预测(MP)是任意复杂环境中的至关重要任务。当前方法使用端到端网络解决了此问题,其中输入数据通常是场景的最高视图和所有代理的过去轨迹;利用此信息是获得最佳性能的必不可少的。从这个意义上讲,可靠的自动驾驶(AD)系统必须按时产生合理的预测,但是,尽管其中许多方法使用了简单的Convnets和LSTM,但在使用两个信息源时,模型对于实时应用程序可能不够有效(地图和轨迹历史)。此外,这些模型的性能在很大程度上取决于训练数据的数量,这可能很昂贵(尤其是带注释的HD地图)。在这项工作中,我们探讨了如何使用有效的基于注意力的模型在Argoverse 1.0基准上实现竞争性能,该模型将其作为最小地图信息的过去轨迹和基于地图的功能的输入,以确保有效且可靠的MP。这些功能代表可解释的信息作为可驱动区域和合理的目标点,与基于黑框CNN的地图处理方法相反。
translated by 谷歌翻译
作为自主驱动系统的核心技术,行人轨迹预测可以显着提高主动车辆安全性的功能,减少道路交通损伤。在交通场景中,当遇到迎面而来的人时,行人可能会立即转动或停止,这通常会导致复杂的轨迹。为了预测这种不可预测的轨迹,我们可以深入了解行人之间的互动。在本文中,我们提出了一种名为Spatial Interaction Transformer(SIT)的新型生成方法,其通过注意机制学习行人轨迹的时空相关性。此外,我们介绍了条件变形Autiachoder(CVAE)框架来模拟未来行人的潜在行动状态。特别是,基于大规模的TRAFC数据集NUSCENES [2]的实验显示,坐下的性能优于最先进的(SOTA)方法。对挑战性的Eth和UCY数据集的实验评估概述了我们提出的模型的稳健性
translated by 谷歌翻译
自治车辆必须推理城市环境中的空间闭塞,以确保安全性而不会过于谨慎。前工作探索了观察到的道路代理人的社会行为的闭塞推动,因此将人们视为传感器。从代理行为推断出占用是一种固有的多模式问题;驾驶员可以同样地表现出与它们之前的不同占用模式类似(例如,驾驶员可以以恒定速度或在开放的道路上移动)。然而,过去的工作不考虑这种多层性,从而忽略了在驾驶员行为及其环境之间的关系中模拟了这种梯级不确定性的来源。我们提出了一种遮挡推理方法,其特征是观察人员的行为作为传感器测量,并将它们与标准传感器套件的熔断器融合。为了捕获炼泥的不确定性,我们用离散的潜在空间训练一个条件变形AutoEncoder,以学习从观察到的驾驶员轨迹到驾驶员前方视图的占用网格表示的多模式映射。我们的方法处理多代理场景,使用证据理论将来自多个观察到的驱动因素的测量结果组合以解决传感器融合问题。我们的方法在真实的数据集中验证,表现出基线,并展示实时能力的性能。我们的代码可在https://github.com/sisl/multiagentvarizingalocclusionInferience获得。
translated by 谷歌翻译
预测道路用户的未来行为是自主驾驶中最具挑战性和最重要的问题之一。应用深度学习对此问题需要以丰富的感知信号和地图信息的形式融合异构世界状态,并在可能的期货上推断出高度多模态分布。在本文中,我们呈现MultiPath ++,这是一个未来的预测模型,实现了在流行的基准上实现最先进的性能。 MultiPath ++通过重新访问许多设计选择来改善多径架构。第一关键设计差异是偏离基于图像的基于输入世界状态的偏离,有利于异构场景元素的稀疏编码:多径++消耗紧凑且有效的折线,直接描述道路特征和原始代理状态信息(例如,位置,速度,加速)。我们提出了一种背景感知这些元素的融合,并开发可重用的多上下文选通融合组件。其次,我们重新考虑了预定义,静态锚点的选择,并开发了一种学习模型端到端的潜在锚嵌入的方法。最后,我们在其他ML域中探索合奏和输出聚合技术 - 常见的常见域 - 并为我们的概率多模式输出表示找到有效的变体。我们对这些设计选择进行了广泛的消融,并表明我们所提出的模型在协会运动预测竞争和Waymo开放数据集运动预测挑战上实现了最先进的性能。
translated by 谷歌翻译
变量自动编码器(VAE)已广泛用于建模数据分布,因为它在理论上优雅,易于训练并且具有不错的多种形式表示。但是,当应用于图像重建和合成任务时,VAE显示了生成样品往往模糊的局限性。我们观察到一个类似的问题,其中生成的轨迹位于相邻的车道之间,通常是在基于VAE的轨迹预测模型中出现的。为了减轻此问题,我们将层次潜在结构引入基于VAE的预测模型。基于以下假设,即可以将轨迹分布近似为简单分布(或模式)的混合物,因此使用低级潜在变量来对混合物的每种模式进行建模,并采用了高级潜在变量来表示权重代表权重对于模式。为了准确地对每个模式进行建模,我们使用以新颖方式计算的两个车道级别上下文向量来调节低级潜在变量,一种对应于车道相互作用,另一个对应于车辆车辆的相互作用。上下文向量还用于通过建议的模式选择网络对权重进行建模。为了评估我们的预测模型,我们使用两个大型现实世界数据集。实验结果表明,我们的模型不仅能够生成清晰的多模式轨迹分布,而且还可以优于最新模型(SOTA)模型。我们的代码可在https://github.com/d1024choi/hlstrajforecast上找到。
translated by 谷歌翻译
在人群情景中,根据许多外部因素,预测行人的轨迹是一个复杂和具有挑战性的任务。场景的拓扑和行人之间的相互作用只是其中一些。由于数据 - 科学和数据收集技术的进步,深入学习方法最近成为众多域中的研究热点。因此,越来越多的研究人员对预测行人的轨迹应用这些方法并不令人惊讶。本文将这些相对较新的深度学习算法与基于经典知识的模型进行了比较,这些算法被广泛用于模拟行人动态。它为两种方法提供了全面的文献综述,探索了技术和应用面向差异,并解决了未来的问题以及未来的发展方向。我们的调查指出,由于深度学习算法的高准确性,现在,基于知识的模型来预测局部轨迹的内容是可疑的。然而,深度学习算法用于大规模模拟的能力和集体动态的描述仍有待证明。此外,比较表明,两种方法(混合方法)的组合似乎很有希望克服像深度学习方法的缺失解释性等缺点。
translated by 谷歌翻译
自治车辆的评估和改善规划需要可扩展的长尾交通方案。有用的是,这些情景必须是现实的和挑战性的,但不能安全地开车。在这项工作中,我们介绍努力,一种自动生成具有挑战性的场景的方法,导致给定的计划者产生不良行为,如冲突。为了维护情景合理性,关键的想法是利用基于图形的条件VAE的形式利用学习的交通运动模型。方案生成在该流量模型的潜在空间中制定了优化,通过扰乱初始的真实世界的场景来产生与给定计划者碰撞的轨迹。随后的优化用于找到“解决方案”的场景,确保改进给定的计划者是有用的。进一步的分析基于碰撞类型的群集生成的场景。我们攻击两名策划者并展示争取在这两种情况下成功地产生了现实,具有挑战性的情景。我们另外“关闭循环”并使用这些方案优化基于规则的策划器的超参数。
translated by 谷歌翻译
Learning multi-agent dynamics is a core AI problem with broad applications in robotics and autonomous driving. While most existing works focus on deterministic prediction, producing probabilistic forecasts to quantify uncertainty and assess risks is critical for downstream decision-making tasks such as motion planning and collision avoidance. Multi-agent dynamics often contains internal symmetry. By leveraging symmetry, specifically rotation equivariance, we can improve not only the prediction accuracy but also uncertainty calibration. We introduce Energy Score, a proper scoring rule, to evaluate probabilistic predictions. We propose a novel deep dynamics model, Probabilistic Equivariant Continuous COnvolution (PECCO) for probabilistic prediction of multi-agent trajectories. PECCO extends equivariant continuous convolution to model the joint velocity distribution of multiple agents. It uses dynamics integration to propagate the uncertainty from velocity to position. On both synthetic and real-world datasets, PECCO shows significant improvements in accuracy and calibration compared to non-equivariant baselines.
translated by 谷歌翻译
安全可靠的自主驾驶堆栈(AD)的设计是我们时代最具挑战性的任务之一。预计这些广告将在具有完全自主权的高度动态环境中驱动,并且比人类更大的可靠性。从这个意义上讲,要高效,安全地浏览任意复杂的流量情景,广告必须具有预测周围参与者的未来轨迹的能力。当前的最新模型通常基于复发,图形和卷积网络,在车辆预测的背景下取得了明显的结果。在本文中,我们探讨了在生成模型进行运动预测中注意力的影响,考虑到物理和社会环境以计算最合理的轨迹。我们首先使用LSTM网络对过去的轨迹进行编码,该网络是计算社会背景的多头自我发言模块的输入。另一方面,我们制定了一个加权插值来计算最后一个观测框中的速度和方向,以便计算可接受的目标点,从HDMAP信息的可驱动的HDMAP信息中提取,这代表了我们的物理环境。最后,我们的发电机的输入是从多元正态分布采样的白噪声矢量,而社会和物理环境则是其条件,以预测可行的轨迹。我们使用Argoverse运动预测基准1.1验证我们的方法,从而实现竞争性的单峰结果。
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译
Motion prediction systems aim to capture the future behavior of traffic scenarios enabling autonomous vehicles to perform safe and efficient planning. The evolution of these scenarios is highly uncertain and depends on the interactions of agents with static and dynamic objects in the scene. GNN-based approaches have recently gained attention as they are well suited to naturally model these interactions. However, one of the main challenges that remains unexplored is how to address the complexity and opacity of these models in order to deal with the transparency requirements for autonomous driving systems, which includes aspects such as interpretability and explainability. In this work, we aim to improve the explainability of motion prediction systems by using different approaches. First, we propose a new Explainable Heterogeneous Graph-based Policy (XHGP) model based on an heterograph representation of the traffic scene and lane-graph traversals, which learns interaction behaviors using object-level and type-level attention. This learned attention provides information about the most important agents and interactions in the scene. Second, we explore this same idea with the explanations provided by GNNExplainer. Third, we apply counterfactual reasoning to provide explanations of selected individual scenarios by exploring the sensitivity of the trained model to changes made to the input data, i.e., masking some elements of the scene, modifying trajectories, and adding or removing dynamic agents. The explainability analysis provided in this paper is a first step towards more transparent and reliable motion prediction systems, important from the perspective of the user, developers and regulatory agencies. The code to reproduce this work is publicly available at https://github.com/sancarlim/Explainable-MP/tree/v1.1.
translated by 谷歌翻译
预测动态场景中的行人轨迹仍然是各种应用中的关键问题,例如自主驾驶和社会意识的机器人。由于人类和人类对象的相互作用和人类随机性引起的未来不确定性,这种预测是挑战。基于生成式模型的方法通过采样潜在变量来处理未来的不确定性。然而,很少有研究探索了潜在变量的产生。在这项工作中,我们提出了具有伪Oracle(TPPO)的轨迹预测器,这是一种基于模型的基于模型的轨迹预测因子。第一个伪甲骨文是行人的移动方向,第二个是从地面真理轨迹估计的潜在变量。社会注意力模块用于基于行人移动方向与未来轨迹之间的相关性聚集邻居的交互。这种相关性受到行人的未来轨迹往往受到前方行人的影响。提出了一种潜在的变量预测器来估计观察和地面轨迹的潜在可变分布。此外,在训练期间,这两个分布之间的间隙最小化。因此,潜在的变量预测器可以估计观察到的轨迹的潜变量,以近似从地面真理轨迹估计。我们将TPPO与在几个公共数据集上的相关方法进行比较。结果表明,TPPO优于最先进的方法,具有低平均和最终位移误差。作为测试期间的采样时间下降,消融研究表明预测性能不会显着降低。
translated by 谷歌翻译
自主驾驶包括多个交互模块,其中每个模块必须与其他模块相反。通常,运动预测模块取决于稳健的跟踪系统以捕获每个代理的过去的移动。在这项工作中,我们系统地探讨了运动预测任务的跟踪模块的重要性,并且最终得出结论,整体运动预测性能对跟踪模块的缺陷非常敏感。我们明确比较了使用跟踪信息的模型,该模型不会跨越多种方案和条件。我们发现跟踪信息发挥着重要作用,并在无噪声条件下提高运动预测性能。然而,在跟踪噪声的情况下,如果没有彻底研究,它可能会影响整体性能。因此,我们应该在开发和测试运动/跟踪模块时注意到噪音,或者他们应该考虑跟踪自由替代品。
translated by 谷歌翻译
预测行人运动对于开发在拥挤的环境中相互作用的社会意识的机器人至关重要。虽然社交互动环境的自然视觉观点是一种自然的观点,但轨迹预测中的大多数现有作品纯粹是在自上而下的轨迹空间中进行的。为了支持第一人称视图轨迹预测研究,我们提出了T2FPV,这是一种构建高保真的第一人称视图数据集的方法,给定真实的,自上而下的轨迹数据集;我们在ETH/UCY行人数据集上展示了我们的方法,以生成所有互动行人的以自我为中心的视觉数据。我们报告说,原始的ETH/UCY数据集中使用的鸟眼视图假设,即代理可以用完美的信息观察场景中的每个人,而不会在第一人称视图中保持;在现有作品中通常使用的每个20个磁场场景中,只有一小部分的代理都可以完全看到。我们评估现有的轨迹预测方法在不同的现实感知水平下 - 与自上而下的完美信息设置相比,位移错误增加了356%。为了促进第一人称视图轨迹预测的研究,我们发布了T2FPV-ETH数据集和软件工具。
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译
We introduce a Deep Stochastic IOC 1 RNN Encoderdecoder framework, DESIRE, for the task of future predictions of multiple interacting agents in dynamic scenes. DESIRE effectively predicts future locations of objects in multiple scenes by 1) accounting for the multi-modal nature of the future prediction (i.e., given the same context, future may vary), 2) foreseeing the potential future outcomes and make a strategic prediction based on that, and 3) reasoning not only from the past motion history, but also from the scene context as well as the interactions among the agents. DESIRE achieves these in a single end-to-end trainable neural network model, while being computationally efficient. The model first obtains a diverse set of hypothetical future prediction samples employing a conditional variational autoencoder, which are ranked and refined by the following RNN scoring-regression module. Samples are scored by accounting for accumulated future rewards, which enables better long-term strategic decisions similar to IOC frameworks. An RNN scene context fusion module jointly captures past motion histories, the semantic scene context and interactions among multiple agents. A feedback mechanism iterates over the ranking and refinement to further boost the prediction accuracy. We evaluate our model on two publicly available datasets: KITTI and Stanford Drone Dataset. Our experiments show that the proposed model significantly improves the prediction accuracy compared to other baseline methods.
translated by 谷歌翻译