基于学习的行为预测方法越来越多地被部署在现实世界的自治系统中,例如,在全球主要城市的自动驾驶汽车舰队中开始商业运营。但是,尽管有进步,但绝大多数预测系统专门针对一组经过验证的地理区域或操作设计领域,使部署到其他城市,国家或大陆。为此,我们提出了一种新颖的方法,可以有效地将行为预测模型适应新环境。我们的方法利用了元学习的最新进展,特别是贝叶斯回归,以使用自适应层增强现有的行为预测模型,该模型可以通过离线微调,在线适应或两者兼而有之有效的域传输。多个现实世界数据集的实验表明,我们的方法可以有效地适应各种看不见的环境。
translated by 谷歌翻译
不确定性遍及现代机器人自主堆栈,几乎每个组件(例如传感器,检测,分类,跟踪,行为预测)产生连续或离散的概率分布。尤其是,轨迹预测被不确定性所包围,因为其输入是由(嘈杂)上游感知产生的,并且其输出是通常用于下游计划中的概率的预测。但是,大多数轨迹预测方法并不能说明上游的不确定性,而仅考虑最明显的值。结果,感知不确定性不会通过预测传播,并且预测通常过于自信。为了解决这个问题,我们提出了一种在轨迹预测中纳入感知状态不确定性的新方法,其关键组成部分是一种新的基于统计距离的损失函数,它鼓励预测不确定性,以更好地匹配上游感知。我们在说明性模拟和大规模的现实世界数据中评估了我们的方法,证明了它在通过预测和产生更校准的预测来传播感知状态不确定性方面的功效。
translated by 谷歌翻译
Reasoning about human motion is an important prerequisite to safe and socially-aware robotic navigation. As a result, multi-agent behavior prediction has become a core component of modern human-robot interactive systems, such as self-driving cars. While there exist many methods for trajectory forecasting, most do not enforce dynamic constraints and do not account for environmental information (e.g., maps). Towards this end, we present Trajectron++, a modular, graph-structured recurrent model that forecasts the trajectories of a general number of diverse agents while incorporating agent dynamics and heterogeneous data (e.g., semantic maps). Trajectron++ is designed to be tightly integrated with robotic planning and control frameworks; for example, it can produce predictions that are optionally conditioned on ego-agent motion plans. We demonstrate its performance on several challenging real-world trajectory forecasting datasets, outperforming a wide array of state-ofthe-art deterministic and generative methods.
translated by 谷歌翻译
仿真是对机器人系统(例如自动驾驶汽车)进行扩展验证和验证的关键。尽管高保真物理和传感器模拟取得了进步,但在模拟道路使用者的现实行为方面仍然存在一个危险的差距。这是因为,与模拟物理和图形不同,设计人类行为的第一个原理模型通常是不可行的。在这项工作中,我们采用了一种数据驱动的方法,并提出了一种可以学会从现实世界驱动日志中产生流量行为的方法。该方法通过将交通仿真问题分解为高级意图推理和低级驾驶行为模仿,通过利用驾驶行为的双层层次结构来实现高样本效率和行为多样性。该方法还结合了一个计划模块,以获得稳定的长马行为。我们从经验上验证了我们的方法,即交通模拟(位)的双层模仿,并具有来自两个大规模驾驶数据集的场景,并表明位表明,在现实主义,多样性和长途稳定性方面可以达到平衡的交通模拟性能。我们还探索了评估行为现实主义的方法,并引入了一套评估指标以进行交通模拟。最后,作为我们的核心贡献的一部分,我们开发和开源一个软件工具,该工具将跨不同驱动数据集的数据格式统一,并将现有数据集将场景转换为交互式仿真环境。有关其他信息和视频,请参见https://sites.google.com/view/nvr-bits2022/home
translated by 谷歌翻译
自治车辆的评估和改善规划需要可扩展的长尾交通方案。有用的是,这些情景必须是现实的和挑战性的,但不能安全地开车。在这项工作中,我们介绍努力,一种自动生成具有挑战性的场景的方法,导致给定的计划者产生不良行为,如冲突。为了维护情景合理性,关键的想法是利用基于图形的条件VAE的形式利用学习的交通运动模型。方案生成在该流量模型的潜在空间中制定了优化,通过扰乱初始的真实世界的场景来产生与给定计划者碰撞的轨迹。随后的优化用于找到“解决方案”的场景,确保改进给定的计划者是有用的。进一步的分析基于碰撞类型的群集生成的场景。我们攻击两名策划者并展示争取在这两种情况下成功地产生了现实,具有挑战性的情景。我们另外“关闭循环”并使用这些方案优化基于规则的策划器的超参数。
translated by 谷歌翻译
Deep motion forecasting models have achieved great success when trained on a massive amount of data. Yet, they often perform poorly when training data is limited. To address this challenge, we propose a transfer learning approach for efficiently adapting pre-trained forecasting models to new domains, such as unseen agent types and scene contexts. Unlike the conventional fine-tuning approach that updates the whole encoder, our main idea is to reduce the amount of tunable parameters that can precisely account for the target domain-specific motion style. To this end, we introduce two components that exploit our prior knowledge of motion style shifts: (i) a low-rank motion style adapter that projects and adjusts the style features at a low-dimensional bottleneck; and (ii) a modular adapter strategy that disentangles the features of scene context and motion history to facilitate a fine-grained choice of adaptation layers. Through extensive experimentation, we show that our proposed adapter design, coined MoSA, outperforms prior methods on several forecasting benchmarks.
translated by 谷歌翻译
Deep reinforcement learning algorithms require large amounts of experience to learn an individual task. While in principle meta-reinforcement learning (meta-RL) algorithms enable agents to learn new skills from small amounts of experience, several major challenges preclude their practicality. Current methods rely heavily on on-policy experience, limiting their sample efficiency. The also lack mechanisms to reason about task uncertainty when adapting to new tasks, limiting their effectiveness in sparse reward problems. In this paper, we address these challenges by developing an offpolicy meta-RL algorithm that disentangles task inference and control. In our approach, we perform online probabilistic filtering of latent task variables to infer how to solve a new task from small amounts of experience. This probabilistic interpretation enables posterior sampling for structured and efficient exploration. We demonstrate how to integrate these task variables with off-policy RL algorithms to achieve both metatraining and adaptation efficiency. Our method outperforms prior algorithms in sample efficiency by 20-100X as well as in asymptotic performance on several meta-RL benchmarks.
translated by 谷歌翻译
Making safe and human-like decisions is an essential capability of autonomous driving systems and learning-based behavior planning is a promising pathway toward this objective. Distinguished from existing learning-based methods that directly output decisions, this work introduces a predictive behavior planning framework that learns to predict and evaluate from human driving data. Concretely, a behavior generation module first produces a diverse set of candidate behaviors in the form of trajectory proposals. Then the proposed conditional motion prediction network is employed to forecast other agents' future trajectories conditioned on each trajectory proposal. Given the candidate plans and associated prediction results, we learn a scoring module to evaluate the plans using maximum entropy inverse reinforcement learning (IRL). We conduct comprehensive experiments to validate the proposed framework on a large-scale real-world urban driving dataset. The results reveal that the conditional prediction model is able to forecast multiple possible future trajectories given a candidate behavior and the prediction results are reactive to different plans. Moreover, the IRL-based scoring module can properly evaluate the trajectory proposals and select close-to-human ones. The proposed framework outperforms other baseline methods in terms of similarity to human driving trajectories. Moreover, we find that the conditional prediction model can improve both prediction and planning performance compared to the non-conditional model, and learning the scoring module is critical to correctly evaluating the candidate plans to align with human drivers.
translated by 谷歌翻译
We introduce a Deep Stochastic IOC 1 RNN Encoderdecoder framework, DESIRE, for the task of future predictions of multiple interacting agents in dynamic scenes. DESIRE effectively predicts future locations of objects in multiple scenes by 1) accounting for the multi-modal nature of the future prediction (i.e., given the same context, future may vary), 2) foreseeing the potential future outcomes and make a strategic prediction based on that, and 3) reasoning not only from the past motion history, but also from the scene context as well as the interactions among the agents. DESIRE achieves these in a single end-to-end trainable neural network model, while being computationally efficient. The model first obtains a diverse set of hypothetical future prediction samples employing a conditional variational autoencoder, which are ranked and refined by the following RNN scoring-regression module. Samples are scored by accounting for accumulated future rewards, which enables better long-term strategic decisions similar to IOC frameworks. An RNN scene context fusion module jointly captures past motion histories, the semantic scene context and interactions among multiple agents. A feedback mechanism iterates over the ranking and refinement to further boost the prediction accuracy. We evaluate our model on two publicly available datasets: KITTI and Stanford Drone Dataset. Our experiments show that the proposed model significantly improves the prediction accuracy compared to other baseline methods.
translated by 谷歌翻译
为了计划安全的演习并采取远见卓识,自动驾驶汽车必须能够准确预测不确定的未来。在自主驾驶的背景下,深层神经网络已成功地应用于从数据中学习人类驾驶行为的预测模型。但是,这些预测遭受了级联错误的影响,导致长时间的不准确性。此外,学识渊博的模型是黑匣子,因此通常不清楚它们如何得出预测。相比之下,由人类专家告知的基于规则的模型在其预测中保持长期连贯性,并且是可解释的。但是,这样的模型通常缺乏捕获复杂的现实世界动态所需的足够表现力。在这项工作中,我们开始通过将智能驱动程序模型(一种流行的手工制作的驱动程序模型)嵌入深度神经网络来缩小这一差距。我们的模型的透明度可以提供可观的优势,例如在调试模型并更容易解释其预测时。我们在模拟合并方案中评估我们的方法,表明它产生了可端到端训练的强大模型,并无需为模型的预测准确性提供更大的透明度。
translated by 谷歌翻译
当自治车辆仍然努力解决在路上驾驶期间解决具有挑战性的情况时,人类长期以来一直掌握具有高效可转移和适应性的驱动能力的推动的本质。通过在驾驶期间模仿人的认知模型和语义理解,我们呈现帽子,一个分层框架,在多助手密集交通环境中产生高质量的驾驶行为。我们的方法层次地由高级意图识别和低级动作生成策略组成。通过语义子任务定义和通用状态表示,分层框架可在不同的驱动方案上传输。此外,我们的模型还能够通过在线适应模块捕获个人和场景之间的驾驶行为的变化。我们展示了在交叉路口和环形交叉路口的真实交通数据的轨迹预测任务中的算法,我们对该提出的方法进行了广泛的研究,并证明了我们的方法在预测准确性和可转移性方面的方式表现出其他方法。
translated by 谷歌翻译
相应地预测周围交通参与者的未来状态,并计划安全,平稳且符合社会的轨迹对于自动驾驶汽车至关重要。当前的自主驾驶系统有两个主要问题:预测模块通常与计划模块解耦,并且计划的成本功能很难指定和调整。为了解决这些问题,我们提出了一个端到端的可区分框架,该框架集成了预测和计划模块,并能够从数据中学习成本函数。具体而言,我们采用可区分的非线性优化器作为运动计划者,该运动计划将神经网络给出的周围剂的预测轨迹作为输入,并优化了自动驾驶汽车的轨迹,从而使框架中的所有操作都可以在框架中具有可观的成本,包括成本功能权重。提出的框架经过大规模的现实驾驶数据集进行了训练,以模仿整个驾驶场景中的人类驾驶轨迹,并在开环和闭环界面中进行了验证。开环测试结果表明,所提出的方法的表现优于各种指标的基线方法,并提供以计划为中心的预测结果,从而使计划模块能够输出接近人类的轨迹。在闭环测试中,提出的方法表明能够处理复杂的城市驾驶场景和鲁棒性,以抵抗模仿学习方法所遭受的分配转移。重要的是,我们发现计划和预测模块的联合培训比在开环和闭环测试中使用单独的训练有素的预测模块进行计划要比计划更好。此外,消融研究表明,框架中的可学习组件对于确保计划稳定性和性能至关重要。
translated by 谷歌翻译
We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two fewshot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.
translated by 谷歌翻译
自动驾驶的运动预测是一项艰巨的任务,因为复杂的驾驶场景导致静态和动态输入的异质组合。这是一个开放的问题,如何最好地表示和融合有关道路几何,车道连接,时变的交通信号状态以及动态代理的历史及其相互作用的历史。为了模拟这一不同的输入功能集,许多提出的方法旨在设计具有多种模态模块的同样复杂系统。这导致难以按严格的方式进行扩展,扩展或调整的系统以进行质量和效率。在本文中,我们介绍了Wayformer,这是一个基于注意力的运动架构,用于运动预测,简单而均匀。 Wayformer提供了一个紧凑的模型描述,该描述由基于注意力的场景编码器和解码器组成。在场景编码器中,我们研究了输入方式的早期,晚和等级融合的选择。对于每种融合类型,我们通过分解的注意力或潜在的查询关注来探索策略来折衷效率和质量。我们表明,尽管早期融合的结构简单,但不仅是情感不可知论,而且还取得了最先进的结果。
translated by 谷歌翻译
学习来自观察数据的行为模式一直是运动预测的遗传方法。然而,目前的范式遭受了两种缺点:协会变化下的脆性和知识转移的低效。在这项工作中,我们建议从因果表现形式解决这些挑战。我们首先介绍了运动预测的因果形式主义,这将问题作为一种动态过程,其中三组潜在变量,即不变的机制,风格混乱和虚假功能。然后我们介绍一个学习框架,分别对待每个组:(i)与从不同地点收集的数据集的共同做法不同,我们通过不变性的损失来利用它们的微妙区分,鼓励模型抑制虚假相关; (ii)我们设计了一种模块化的架构,可以修理不变机制和风格混淆的表示,以近似因果图; (iii)我们介绍了一种风格的一致性损失,不仅强制实施了风格表示的结构,而且还用作自我监控信号,以便在飞行中进行测试时间改进。合成和实时数据集的实验结果表明,我们的三个提出的组件显着提高了学习运动表示的鲁棒性和可重用性,优于出现的先前最先进的运动预测模型,用于分发外概括和低次转移。
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译
自我监督学习(SSL)是一种新兴技术,已成功地用于培训卷积神经网络(CNNS)和图形神经网络(GNNS),以进行更可转移,可转换,可推广和稳健的代表性学习。然而,很少探索其对自动驾驶的运动预测。在这项研究中,我们报告了将自学纳入运动预测的首次系统探索和评估。我们首先建议研究四项新型的自我监督学习任务,以通过理论原理以及对挑战性的大规模argoverse数据集进行运动预测以及定量和定性比较。其次,我们指出,基于辅助SSL的学习设置不仅胜过预测方法,这些方法在性能准确性方面使用变压器,复杂的融合机制和复杂的在线密集目标候选优化算法,而且具有较低的推理时间和建筑复杂性。最后,我们进行了几项实验,以了解为什么SSL改善运动预测。代码在\ url {https://github.com/autovision-cloud/ssl-lanes}上开源。
translated by 谷歌翻译
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.
translated by 谷歌翻译
预测行人运动对于人类行为分析以及安全有效的人类代理相互作用至关重要。但是,尽管取得了重大进展,但对于捕捉人类导航决策的不确定性和多模式的现有方法仍然具有挑战性。在本文中,我们提出了SocialVae,这是一种新颖的人类轨迹预测方法。社会节的核心是一种时间上的变性自动编码器体系结构,它利用随机反复的神经网络进行预测,结合社会注意力机制和向后的后近似值,以更好地提取行人导航策略。我们表明,社交活动改善了几个步行轨迹预测基准的最新性能,包括ETH/UCY基准,Stanford Drone DataSet和Sportvu NBA运动数据集。代码可在以下网址获得:https://github.com/xupei0610/socialvae。
translated by 谷歌翻译
背景信息:在过去几年中,机器学习(ML)一直是许多创新的核心。然而,包括在所谓的“安全关键”系统中,例如汽车或航空的系统已经被证明是非常具有挑战性的,因为ML的范式转变为ML带来完全改变传统认证方法。目的:本文旨在阐明与ML为基础的安全关键系统认证有关的挑战,以及文献中提出的解决方案,以解决它们,回答问题的问题如何证明基于机器学习的安全关键系统?'方法:我们开展2015年至2020年至2020年之间发布的研究论文的系统文献综述(SLR),涵盖了与ML系统认证有关的主题。总共确定了217篇论文涵盖了主题,被认为是ML认证的主要支柱:鲁棒性,不确定性,解释性,验证,安全强化学习和直接认证。我们分析了每个子场的主要趋势和问题,并提取了提取的论文的总结。结果:单反结果突出了社区对该主题的热情,以及在数据集和模型类型方面缺乏多样性。它还强调需要进一步发展学术界和行业之间的联系,以加深域名研究。最后,它还说明了必须在上面提到的主要支柱之间建立连接的必要性,这些主要柱主要主要研究。结论:我们强调了目前部署的努力,以实现ML基于ML的软件系统,并讨论了一些未来的研究方向。
translated by 谷歌翻译