如果它使用所有可用数据同时学习预测器并通过在未见的数据上有效的统计证书证明其质量,则自我认证。最近的工作表明,通过优化PAC-Bayes界限训练的神经网络模型不仅可以提高准确的预测因子,而且涉及严格的风险证书,致力于实现自我认证的学习。在这种情况下,由于能够利用所有数据来学习后验并同时证明其风险,基于PAC-Bayes界的学习和认证策略尤其吸引力。在本文中,我们评估了Pac-Bayes灵感目标的概率神经网络中自我认证的进展。我们经验比较(在4个分类数据集)的经典测试集合,用于确定性预测器的界限和用于随机自我认证的预测器的PAC-Bayes。我们首先表明这两个概括界界不太远非出现超出样本测试集错误。然后我们认为,在数据饥饿制度中,保持测试集合的数据对泛化性能产生不利影响,而基于PAC-Bayes界限的自我认证策略不会遭受这种缺点,证明它们可能是适当的选择小数据制度。我们还发现Pac-Bayes的概率神经网络受到Pac-Bayes启发目标的启发目标导致证书可以令人惊讶地竞争常用的测试集合。
translated by 谷歌翻译
在本文中,我们调查了问题:给定少数DataPoints,例如n = 30,可以严格的CAG-Bayes和测试集界限进行紧张吗?对于这种小型数据集,测试集界限通过从培训程序中扣留数据而产生不利影响泛化性能。在这种环境中,Pac-Bayes界限尤其吸引力,因为它们使用所有数据的能力同时学习后部并结合其泛化风险。我们专注于i.i.d.具有有界损失的数据,并考虑Germain等人的通用Pac-Bayes定理。虽然已知定理恢复许多现有的PAC-Bayes界,但目前尚不清楚他们的框架中最有束缚的终结。对于一个固定的学习算法和数据集,我们表明最紧密的绑定与Catoni考虑的绑定相一致;并且,在更自然的数据集发行情况下,我们在期望中获得最佳界限的下限。有趣的是,如果后部等于先前,则这个下限会恢复绑定的Chernoff测试集。此外,为了说明这些界限有多紧,我们研究了合成的一维分类任务,其中它是可行的 - 学习绑定的先前和形状,以便最有效地优化最佳界限。我们发现,在这种简单,受控的场景中,Pac-Bayes界竞争与可比常用的Chernoff测试集合界限具有竞争​​力。然而,最清晰的测试集界仍然导致泛化误差比我们考虑的Pac-Bayes所界限更好地保证。
translated by 谷歌翻译
我们专注于具有单个隐藏层的特定浅神经网络,即具有$ l_2 $ normalistization的数据以及Sigmoid形状的高斯错误函数(“ ERF”)激活或高斯错误线性单元(GELU)激活。对于这些网络,我们通过Pac-Bayesian理论得出了新的泛化界限。与大多数现有的界限不同,它们适用于具有确定性或随机参数的神经网络。当网络接受Mnist和Fashion-Mnist上的香草随机梯度下降训练时,我们的界限在经验上是无效的。
translated by 谷歌翻译
我们通过Pac-Bayes概括界的镜头研究冷后效应。我们认为,在非反应环境中,当训练样本的数量相对较小时,应考虑到冷后效应的讨论,即大概贝叶斯推理并不能容易地提供对样本外数据的性能的保证。取而代之的是,通过泛化结合更好地描述了样本外误差。在这种情况下,我们探讨了各种推理与PAC-Bayes目标的ELBO目标之间的联系。我们注意到,虽然Elbo和Pac-Bayes目标相似,但后一个目标自然包含温度参数$ \ lambda $,不限于$ \ lambda = 1 $。对于回归和分类任务,在各向同性拉普拉斯与后部的近似值的情况下,我们展示了这种对温度参数的PAC-bayesian解释如何捕获冷后效应。
translated by 谷歌翻译
通过使一组基本预测因素投票根据一些权重,即对某些概率分布来获得聚合预测器。根据一些规定的概率分布,通过在一组基本预测器中采样来获得随机预测器。因此,聚合和随机预测器的共同之处包括最小化问题,而是通过对预测器集的概率分布来定义。在统计学习理论中,有一套工具旨在了解此类程序的泛化能力:Pac-Bayesian或Pac-Bayes界。由于D. Mcallester的原始Pac-Bayes界,这些工具在许多方向上得到了大大改善(例如,我们将描述社区错过的O. Catoni的定位技术的简化版本,后来被重新发现“相互信息界“)。最近,Pac-Bayes的界限受到相当大的关注:例如,在2017年的Pac-Bayes上有研讨会,“(几乎)50种贝叶斯学习:Pac-Bayesian趋势和见解”,由B. Guedj,F组织。 。巴赫和P.Merain。这一最近成功的原因之一是通过G. Dziugaite和D. Roy成功地将这些限制应用于神经网络。对Pac-Bayes理论的初步介绍仍然缺失。这是一种尝试提供这样的介绍。
translated by 谷歌翻译
我们为通过连续时间(非策略)梯度下降而训练的分类器建立了一个崩解的Pac-bayesian结合。与Pac-Bayesian环境中的标准配置相反,我们的结果适用于确定性的培训算法,以随机初始化为条件,而无需任何$ \ textit {de-randomisation} $ step。我们对我们提出的界限的主要特征进行了广泛的讨论,并在分析和经验上研究了它在线性模型上的行为,从而找到了有希望的结果。
translated by 谷歌翻译
Learning curves provide insight into the dependence of a learner's generalization performance on the training set size. This important tool can be used for model selection, to predict the effect of more training data, and to reduce the computational complexity of model training and hyperparameter tuning. This review recounts the origins of the term, provides a formal definition of the learning curve, and briefly covers basics such as its estimation. Our main contribution is a comprehensive overview of the literature regarding the shape of learning curves. We discuss empirical and theoretical evidence that supports well-behaved curves that often have the shape of a power law or an exponential. We consider the learning curves of Gaussian processes, the complex shapes they can display, and the factors influencing them. We draw specific attention to examples of learning curves that are ill-behaved, showing worse learning performance with more training data. To wrap up, we point out various open problems that warrant deeper empirical and theoretical investigation. All in all, our review underscores that learning curves are surprisingly diverse and no universal model can be identified.
translated by 谷歌翻译
我们研究了对分类器的有限集合的多数投票的概括特性,通过PAC-Bayes理论证明了基于利润的概括界。这些为许多分类任务提供了最先进的保证。我们的中心结果利用了Zantedeschi等人最近研究的Dirichlet后期。[2021]用于培训投票分类器;与这项工作相反,我们的界限适用于通过利润率使用的非随机票。我们的贡献使Schapire等人提出的“边缘理论”的辩论增加了观点。[1998]用于集合分类器的概括。
translated by 谷歌翻译
本文研究了用于训练过度参数化制度中的贝叶斯神经网络(BNN)的变异推理(VI),即当神经元的数量趋于无穷大时。更具体地说,我们考虑过度参数化的两层BNN,并指出平均VI训练中的关键问题。这个问题来自于证据(ELBO)的下限分解为两个术语:一个与模型的可能性函数相对应,第二个对应于kullback-leibler(KL)差异(KL)差异。特别是,我们从理论和经验上都表明,只有当根据观测值和神经元之间的比率适当地重新缩放KL时,在过度参数化制度中,这两个术语之间存在权衡。我们还通过数值实验来说明我们的理论结果,这些实验突出了该比率的关键选择。
translated by 谷歌翻译
在这项工作中,我们使用变分推论来量化无线电星系分类的深度学习模型预测的不确定性程度。我们表明,当标记无线电星系时,个体测试样本的模型后差水平与人类不确定性相关。我们探讨了各种不同重量前沿的模型性能和不确定性校准,并表明稀疏事先产生更良好的校准不确定性估计。使用单个重量的后部分布,我们表明我们可以通过从最低信噪比(SNR)中除去权重来修剪30%的完全连接的层权重,而无需显着损失性能。我们证明,可以使用基于Fisher信息的排名来实现更大程度的修剪,但我们注意到两种修剪方法都会影响Failaroff-Riley I型和II型无线电星系的不确定性校准。最后,我们表明,与此领域的其他工作相比,我们经历了冷的后效,因此后部必须缩小后加权以实现良好的预测性能。我们检查是否调整成本函数以适应模型拼盘可以弥补此效果,但发现它不会产生显着差异。我们还研究了原则数据增强的效果,并发现这改善了基线,而且还没有弥补观察到的效果。我们将其解释为寒冷的后效,因为我们的培训样本过于有效的策划导致可能性拼盘,并将其提高到未来无线电银行分类的潜在问题。
translated by 谷歌翻译
用于分类任务的机器学习算法的最终性能通常根据基于测试数据集的经验误差概率(或准确性)来衡量。然而,这些算法通过基于训练集的典型不同 - 更方便的损耗功能而优化了这些算法。对于分类任务,这种损失函数通常是负值损耗,导致众所周知的交叉熵风险,这通常比误差概率更好地表现出(从数值角度)。关于泛化误差的常规研究通常不会考虑训练和测试阶段的损失之间的潜在不匹配。在这项工作中,考虑到基于精度度量和负对数损耗的训练,基于概括的Pock-Wise Pac方法的分析。我们标记此分析Pacman。建立所提到的不匹配可以写成似然比,浓度不平等可以用于根据一些有意义的信息理论量的一些点智选一的界限提供一些关于泛化问题的见解。还提供了对所得界限的分析和与文献中的可用结果进行比较。
translated by 谷歌翻译
我们使用边缘赋予易于思考Pac-Bayesian界的一般配方,临界成分是我们随机预测集中在某种程度上集中。我们开发的工具直接导致各种分类器的裕度界限,包括线性预测 - 一个类,包括升高和支持向量机 - 单隐藏层神经网络,具有异常\(\ ERF \)激活功能,以及深度释放网络。此外,我们延伸到部分易碎的预测器,其中只去除一些随机性,让我们延伸到我们预测器的浓度特性否则差的情况。
translated by 谷歌翻译
多类神经网络是现代无监督的领域适应性中的常见工具,但是在适应性文献中缺乏针对其非均匀样品复杂性的适当理论描述。为了填补这一空白,我们为多类学习者提出了第一个Pac-Bayesian适应范围。我们还提出了我们考虑的多类分布差异的第一个近似技术,从而促进了界限的实际使用。对于依赖Gibbs预测因子的分歧,我们提出了其他PAC-湾适应界限,以消除对蒙特卡洛效率低下的需求。从经验上讲,我们测试了我们提出的近似技术的功效以及一些新型的设计概念,我们在范围中包括。最后,我们应用界限来分析使用神经网络的常见适应算法。
translated by 谷歌翻译
PAC-Bayes has recently re-emerged as an effective theory with which one can derive principled learning algorithms with tight performance guarantees. However, applications of PAC-Bayes to bandit problems are relatively rare, which is a great misfortune. Many decision-making problems in healthcare, finance and natural sciences can be modelled as bandit problems. In many of these applications, principled algorithms with strong performance guarantees would be very much appreciated. This survey provides an overview of PAC-Bayes performance bounds for bandit problems and an experimental comparison of these bounds. Our experimental comparison has revealed that available PAC-Bayes upper bounds on the cumulative regret are loose, whereas available PAC-Bayes lower bounds on the expected reward can be surprisingly tight. We found that an offline contextual bandit algorithm that learns a policy by optimising a PAC-Bayes bound was able to learn randomised neural network polices with competitive expected reward and non-vacuous performance guarantees.
translated by 谷歌翻译
With a goal of understanding what drives generalization in deep networks, we consider several recently suggested explanations, including norm-based control, sharpness and robustness. We study how these measures can ensure generalization, highlighting the importance of scale normalization, and making a connection between sharpness and PAC-Bayes theory. We then investigate how well the measures explain different observed phenomena.
translated by 谷歌翻译
适应数据分布的结构(例如对称性和转型Imarerces)是机器学习中的重要挑战。通过架构设计或通过增强数据集,可以内在学习过程中内置Inhormces。两者都需要先验的了解对称性的确切性质。缺乏这种知识,从业者求助于昂贵且耗时的调整。为了解决这个问题,我们提出了一种新的方法来学习增强变换的分布,以新的\ emph {转换风险最小化}(trm)框架。除了预测模型之外,我们还优化了从假说空间中选择的转换。作为算法框架,我们的TRM方法是(1)有效(共同学习增强和模型,以\ emph {单训练环}),(2)模块化(使用\ emph {任何训练算法),以及(3)一般(处理\ \ ich {离散和连续}增强)。理论上与标准风险最小化的TRM比较,并在其泛化误差上给出PAC-Bayes上限。我们建议通过块组成的新参数化优化富裕的增强空间,导致新的\ EMPH {随机成分增强学习}(SCALE)算法。我们在CIFAR10 / 100,SVHN上使用先前的方法(快速自身自动化和武术器)进行实际比较规模。此外,我们表明规模可以在数据分布中正确地学习某些对称性(恢复旋转Mnist上的旋转),并且还可以改善学习模型的校准。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
目前,难以获得贝叶斯方法深入学习的好处,这允许明确的知识规范,准确地捕获模型不确定性。我们呈现先前数据拟合网络(PFN)。 PFN利用大规模机器学习技术来近似一组一组后索。 PFN唯一要求工作的要求是能够从先前分配通过监督的学习任务(或函数)来采样。我们的方法将后近似的目标重新定为具有带有值的输入的监督分类问题:它反复从先前绘制任务(或功能),从中绘制一组数据点及其标签,掩盖其中一个标签并学习基于其余数据点的设定值输入对其进行概率预测。呈现来自新的监督学习任务的一组样本作为输入,PFNS在单个前向传播中对任意其他数据点进行概率预测,从而学习到近似贝叶斯推断。我们展示了PFN可以接近完全模仿高斯过程,并且还可以实现高效的贝叶斯推理对难以处理的问题,与当前方法相比,多个设置中有超过200倍的加速。我们在非常多样化的地区获得强烈的结果,如高斯过程回归,贝叶斯神经网络,小型表格数据集的分类,以及少量图像分类,展示了PFN的一般性。代码和培训的PFN在https://github.com/automl/transformerscandobayesianinference发布。
translated by 谷歌翻译
We propose an analysis in fair learning that preserves the utility of the data while reducing prediction disparities under the criteria of group sufficiency. We focus on the scenario where the data contains multiple or even many subgroups, each with limited number of samples. As a result, we present a principled method for learning a fair predictor for all subgroups via formulating it as a bilevel objective. Specifically, the subgroup specific predictors are learned in the lower-level through a small amount of data and the fair predictor. In the upper-level, the fair predictor is updated to be close to all subgroup specific predictors. We further prove that such a bilevel objective can effectively control the group sufficiency and generalization error. We evaluate the proposed framework on real-world datasets. Empirical evidence suggests the consistently improved fair predictions, as well as the comparable accuracy to the baselines.
translated by 谷歌翻译
We introduce a new, efficient, principled and backpropagation-compatible algorithm for learning a probability distribution on the weights of a neural network, called Bayes by Backprop. It regularises the weights by minimising a compression cost, known as the variational free energy or the expected lower bound on the marginal likelihood. We show that this principled kind of regularisation yields comparable performance to dropout on MNIST classification. We then demonstrate how the learnt uncertainty in the weights can be used to improve generalisation in non-linear regression problems, and how this weight uncertainty can be used to drive the exploration-exploitation trade-off in reinforcement learning.
translated by 谷歌翻译