强化学习的关键挑战是解决了长地平规划问题。最近的工作已经利用计划在这些设置中引导钢筋学习。但是,这些方法对用户施加了高手动负担,因为它们必须为每项新任务提供指导计划。部分观察到的环境进一步使编程任务复杂化,因为程序必须实现正确,理想地最佳地实现策略,处理环境的隐藏区域的所有可能配置。我们提出了一种新的方法,模型预测程序合成(MPP),它使用程序综合来自动生成指导程序。它培训了一种生成模型来预测世界的未观察到的部分,然后以鲁棒到其不确定性的方式基于来自该模型的样本来综合程序。在我们的实验中,我们表明我们的方法在一组具有挑战性的基准上显着优于非程序引导的方法,包括2D Minecraft-Inspired环境,代理商必须完成复杂的子组织序列来实现其目标,并实现类似的使用手动程序指导代理的性能。我们的结果表明,我们的方法可以在不需要用户为每项新任务提供新的指导计划的情况下获得方案引导的强化学习的好处。
translated by 谷歌翻译
我们研究了逻辑规范给出的复杂任务的学习策略问题。最近的方法从给定的规范自动生成奖励功能,并使用合适的加强学习算法来学习最大化预期奖励的策略。然而,这些方法对需要高级别计划的复杂任务奠定了差。在这项工作中,我们开发了一种称为Dirl的组成学习方法,可交织高级别的规划和强化学习。首先,Dirl将规范编码为抽象图;直观地,图的顶点和边缘分别对应于状态空间的区域和更简单的子任务。我们的方法然后结合了增强学习,以便在Dijkstra风格的规划算法内为每个边缘(子任务)学习神经网络策略,以计算图表中的高级计划。对具有连续状态和行动空间的一套具有挑战性的控制基准测试的提出方法的评估表明它优于最先进的基线。
translated by 谷歌翻译
长期的Horizo​​n机器人学习任务稀疏的奖励对当前的强化学习算法构成了重大挑战。使人类能够学习挑战的控制任务的关键功能是,他们经常获得专家干预,使他们能够在掌握低级控制动作之前了解任务的高级结构。我们为利用专家干预来解决长马增强学习任务的框架。我们考虑\ emph {选项模板},这是编码可以使用强化学习训练的潜在选项的规格。我们将专家干预提出,因为允许代理商在学习实施之前执行选项模板。这使他们能够使用选项,然后才能为学习成本昂贵的资源学习。我们在三个具有挑战性的强化学习问题上评估了我们的方法,这表明它的表现要优于最先进的方法。训练有素的代理商和我们的代码视频可以在以下网址找到:https://sites.google.com/view/stickymittens
translated by 谷歌翻译
最近,深增强学习(DRL)方法在各种域中的任务方面取得了令人印象深刻的性能。然而,用DRL方法产生的神经网络政策不是人为可解释的,并且通常难以推广到新颖的情景。为了解决这些问题,事先作品探索学习更具可诠释和构建的概括的程序政策。然而,这些作品要么采用有限的政策表示(例如,决策树,状态机或预定义的程序模板)或需要更强的监督(例如输入/输出状态对或专家演示)。我们提出了一个框架,而是学习合成一个程序,该程序详细介绍了以灵活和表现力的方式解决任务的过程,仅来自奖励信号。为了减轻学习难以从头开始诱发所需的代理行为的难度,我们建议首先了解一个程序嵌入空间,以不传达的方式连续参加各种行为,然后搜索嵌入空间以产生程序最大化给定任务的返回。实验结果表明,所提出的框架不仅可以可靠地综合任务解决方案,而且在产生可解释和更广泛的政策的同时优于DRL和程序合成基线。我们还可以证明所提出的两级学习计划的必要性,并分析了学习计划嵌入的各种方法。
translated by 谷歌翻译
将有用的背景知识传达给加强学习(RL)代理是加速学习的重要方法。我们介绍了Rlang,这是一种特定领域的语言(DSL),用于将域知识传达给RL代理。与RL社区提出的其他现有DSL不同,该基础是决策形式主义的单个要素(例如,奖励功能或政策功能),RLANG可以指定有关马尔可夫决策过程中每个元素的信息。我们为rlang定义了精确的语法和基础语义,并提供了解析器实施,将rlang程序基于算法 - 敏捷的部分世界模型和政策,可以由RL代理利用。我们提供一系列示例RLANG程序,并演示不同的RL方法如何利用所得的知识,包括无模型和基于模型的表格算法,分层方法和深度RL算法(包括策略梯度和基于价值的方法)。
translated by 谷歌翻译
我们提出了Rapid-Learn:学习再次恢复和计划,即一种混合计划和学习方法,以解决适应代理环境中突然和意外变化(即新颖性)的问题。 Rapid-Learn旨在实时制定和求解任务的Markov决策过程(MDPS),并能够利用域知识来学习由环境变化引起的任何新动态。它能够利用域知识来学习行动执行者,这可以进一步用于解决执行智能,从而成功执行了计划。这种新颖信息反映在其更新的域模型中。我们通过在受到Minecraft启发的环境环境中引入各种新颖性来证明其功效,并将我们的算法与文献中的转移学习基线进行比较。我们的方法是(1)即使在存在多个新颖性的情况下,(2)比转移学习RL基准的样本有效,以及(3)与不完整的模型信息相比,与纯净的符号计划方法相反。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
A critical challenge in multi-agent reinforcement learning(MARL) is for multiple agents to efficiently accomplish complex, long-horizon tasks. The agents often have difficulties in cooperating on common goals, dividing complex tasks, and planning through several stages to make progress. We propose to address these challenges by guiding agents with programs designed for parallelization, since programs as a representation contain rich structural and semantic information, and are widely used as abstractions for long-horizon tasks. Specifically, we introduce Efficient Multi-Agent Reinforcement Learning with Parallel Program Guidance(E-MAPP), a novel framework that leverages parallel programs to guide multiple agents to efficiently accomplish goals that require planning over $10+$ stages. E-MAPP integrates the structural information from a parallel program, promotes the cooperative behaviors grounded in program semantics, and improves the time efficiency via a task allocator. We conduct extensive experiments on a series of challenging, long-horizon cooperative tasks in the Overcooked environment. Results show that E-MAPP outperforms strong baselines in terms of the completion rate, time efficiency, and zero-shot generalization ability by a large margin.
translated by 谷歌翻译
虽然深增强学习已成为连续决策问题的有希望的机器学习方法,但对于自动驾驶或医疗应用等高利害域来说仍然不够成熟。在这种情况下,学习的政策需要例如可解释,因此可以在任何部署之前检查它(例如,出于安全性和验证原因)。本调查概述了各种方法,以实现加固学习(RL)的更高可解释性。为此,我们将解释性(作为模型的财产区分开来和解释性(作为HOC操作后的讲话,通过代理的干预),并在RL的背景下讨论它们,并强调前概念。特别是,我们认为可译文的RL可能会拥抱不同的刻面:可解释的投入,可解释(转型/奖励)模型和可解释的决策。根据该计划,我们总结和分析了与可解释的RL相关的最近工作,重点是过去10年来发表的论文。我们还简要讨论了一些相关的研究领域并指向一些潜在的有前途的研究方向。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques. * Equal contribution. Order was determined by coin flip.
translated by 谷歌翻译
需要长马计划和持续控制能力的问题对现有的强化学习剂构成了重大挑战。在本文中,我们介绍了一种新型的分层增强学习代理,该学习代理将延时的技能与持续控制的技能与远期模型联系起来,以象征性的分离环境的计划进行计划。我们认为我们的代理商符合符号效应的多样化技能。我们制定了一种客观且相应的算法,该算法通过已知的抽象来通过内在动机来无监督学习各种技能。这些技能是通过符号前向模型共同学习的,该模型捕获了国家抽象中技能执行的影响。训练后,我们可以使用向前模型来利用符号动作的技能来进行长途计划,并随后使用学识渊博的连续行动控制技能执行计划。拟议的算法学习了技能和前瞻性模型,可用于解决复杂的任务,这些任务既需要连续控制和长效计划功能,却具有很高的成功率。它与其他平坦和分层的增强学习基线代理相比,并通过真正的机器人成功证明。
translated by 谷歌翻译
The reinforcement learning paradigm is a popular way to address problems that have only limited environmental feedback, rather than correctly labeled examples, as is common in other machine learning contexts. While significant progress has been made to improve learning in a single task, the idea of transfer learning has only recently been applied to reinforcement learning tasks. The core idea of transfer is that experience gained in learning to perform one task can help improve learning performance in a related, but different, task. In this article we present a framework that classifies transfer learning methods in terms of their capabilities and goals, and then use it to survey the existing literature, as well as to suggest future directions for transfer learning work.
translated by 谷歌翻译
In inverse reinforcement learning (IRL), a learning agent infers a reward function encoding the underlying task using demonstrations from experts. However, many existing IRL techniques make the often unrealistic assumption that the agent has access to full information about the environment. We remove this assumption by developing an algorithm for IRL in partially observable Markov decision processes (POMDPs). We address two limitations of existing IRL techniques. First, they require an excessive amount of data due to the information asymmetry between the expert and the learner. Second, most of these IRL techniques require solving the computationally intractable forward problem -- computing an optimal policy given a reward function -- in POMDPs. The developed algorithm reduces the information asymmetry while increasing the data efficiency by incorporating task specifications expressed in temporal logic into IRL. Such specifications may be interpreted as side information available to the learner a priori in addition to the demonstrations. Further, the algorithm avoids a common source of algorithmic complexity by building on causal entropy as the measure of the likelihood of the demonstrations as opposed to entropy. Nevertheless, the resulting problem is nonconvex due to the so-called forward problem. We solve the intrinsic nonconvexity of the forward problem in a scalable manner through a sequential linear programming scheme that guarantees to converge to a locally optimal policy. In a series of examples, including experiments in a high-fidelity Unity simulator, we demonstrate that even with a limited amount of data and POMDPs with tens of thousands of states, our algorithm learns reward functions and policies that satisfy the task while inducing similar behavior to the expert by leveraging the provided side information.
translated by 谷歌翻译
This paper addresses the problem of reliably and efficiently solving broad classes of long-horizon stochastic path planning problems. Starting with a vanilla RL formulation with a stochastic dynamics simulator and an occupancy matrix of the environment, our approach computes useful options with policies as well as high-level paths that compose the discovered options. Our main contributions are (1) data-driven methods for creating abstract states that serve as endpoints for helpful options, (2) methods for computing option policies using auto-generated option guides in the form of dense pseudo-reward functions, and (3) an overarching algorithm for composing the computed options. We show that this approach yields strong guarantees of executability and solvability: under fairly general conditions, the computed option guides lead to composable option policies and consequently ensure downward refinability. Empirical evaluation on a range of robots, environments, and tasks shows that this approach effectively transfers knowledge across related tasks and that it outperforms existing approaches by a significant margin.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
行为树(BT)是一种在自主代理中(例如机器人或计算机游戏中的虚拟实体)之间在不同任务之间进行切换的方法。 BT是创建模块化和反应性的复杂系统的一种非常有效的方法。这些属性在许多应用中至关重要,这导致BT从计算机游戏编程到AI和机器人技术的许多分支。在本书中,我们将首先对BTS进行介绍,然后我们描述BTS与早期切换结构的关系,并且在许多情况下如何概括。然后,这些想法被用作一套高效且易于使用的设计原理的基础。安全性,鲁棒性和效率等属性对于自主系统很重要,我们描述了一套使用BTS的状态空间描述正式分析这些系统的工具。借助新的分析工具,我们可以对BTS如何推广早期方法的形式形式化。我们还显示了BTS在自动化计划和机器学习中的使用。最后,我们描述了一组扩展的工具,以捕获随机BT的行为,其中动作的结果由概率描述。这些工具可以计算成功概率和完成时间。
translated by 谷歌翻译
长期以来,能够接受和利用特定于人类的任务知识的增强学习(RL)代理人被认为是开发可扩展方法来解决长途问题的可能策略。尽管以前的作品已经研究了使用符号模型以及RL方法的可能性,但他们倾向于假设高级动作模型在低级别上是可执行的,并且流利者可以专门表征所有理想的MDP状态。但是,现实世界任务的符号模型通常是不完整的。为此,我们介绍了近似符号模型引导的增强学习,其中我们将正式化符号模型与基础MDP之间的关系,这将使我们能够表征符号模型的不完整性。我们将使用这些模型来提取将用于分解任务的高级地标。在低水平上,我们为地标确定的每个可能的任务次目标学习了一组不同的政策,然后将其缝合在一起。我们通过在三个不同的基准域进行测试来评估我们的系统,并显示即使是不完整的符号模型信息,我们的方法也能够发现任务结构并有效地指导RL代理到达目标。
translated by 谷歌翻译
奖励设计是强化学习(RL)的根本问题。错过或设计不佳的奖励可能导致样品效率低和不期望的行为。在本文中,我们提出了\ texit {programmatic奖励设计}的想法,即使用程序在RL环境中指定奖励函数。程序允许人工工程师以结构化和可意识的方式表达子目标和复杂的任务场景。然而,程序奖励设计的挑战是,虽然人类可以提供高级结构,适当地设置低级细节,例如对特定子任务的正确奖励量仍然困难。本文的主要贡献是概率框架,可以从专家演示中推断出最佳候选程序奖励功能。灵感来自最近的生成 - 对策方法,我们的框架{搜索最有可能的编程奖励功能,在那时最佳生成的轨迹无法与所公示的轨迹界别区别}。实验结果表明,使用此框架学习的编程奖励功能可以显着优于使用现有奖励学习算法的学习者,并使RL代理能够在高度复杂的任务上实现最先进的性能。
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译