In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal generation and stage-2 for refining proposals in the canonical coordinates to obtain the final detection results. Instead of generating proposals from RGB image or projecting point cloud to bird's view or voxels as previous methods do, our stage-1 sub-network directly generates a small number of high-quality 3D proposals from point cloud in a bottom-up manner via segmenting the point cloud of the whole scene into foreground points and background. The stage-2 sub-network transforms the pooled points of each proposal to canonical coordinates to learn better local spatial features, which is combined with global semantic features of each point learned in stage-1 for accurate box refinement and confidence prediction. Extensive experiments on the 3D detection benchmark of KITTI dataset show that our proposed architecture outperforms state-of-the-art methods with remarkable margins by using only point cloud as input. The code is available at https://github.com/sshaoshuai/PointRCNN.
translated by 谷歌翻译
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A 2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A 2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.
translated by 谷歌翻译
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction to learn more discriminative point cloud features. It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks. Specifically, the proposed framework summarizes the 3D scene with a 3D voxel CNN into a small set of keypoints via a novel voxel set abstraction module to save follow-up computations and also to encode representative scene features. Given the highquality 3D proposals generated by the voxel CNN, the RoIgrid pooling is proposed to abstract proposal-specific features from the keypoints to the RoI-grid points via keypoint set abstraction with multiple receptive fields. Compared with conventional pooling operations, the RoI-grid feature points encode much richer context information for accurately estimating object confidences and locations. Extensive experiments on both the KITTI dataset and the Waymo Open dataset show that our proposed PV-RCNN surpasses state-of-the-art 3D detection methods with remarkable margins by using only point clouds. Code is available at https://github.com/open-mmlab/OpenPCDet.
translated by 谷歌翻译
We present a new two-stage 3D object detection framework, named sparse-to-dense 3D Object Detector (STD). The first stage is a bottom-up proposal generation network that uses raw point cloud as input to generate accurate proposals by seeding each point with a new spherical anchor. It achieves a high recall with less computation compared with prior works. Then, PointsPool is applied for generating proposal features by transforming their interior point features from sparse expression to compact representation, which saves even more computation time. In box prediction, which is the second stage, we implement a parallel intersection-over-union (IoU) branch to increase awareness of localization accuracy, resulting in further improved performance. We conduct experiments on KITTI dataset, and evaluate our method in terms of 3D object and Bird's Eye View (BEV) detection. Our method outperforms other stateof-the-arts by a large margin, especially on the hard set, with inference speed more than 10 FPS.
translated by 谷歌翻译
In this work, we study 3D object detection from RGB-D data in both indoor and outdoor scenes. While previous methods focus on images or 3D voxels, often obscuring natural 3D patterns and invariances of 3D data, we directly operate on raw point clouds by popping up RGB-D scans. However, a key challenge of this approach is how to efficiently localize objects in point clouds of large-scale scenes (region proposal). Instead of solely relying on 3D proposals, our method leverages both mature 2D object detectors and advanced 3D deep learning for object localization, achieving efficiency as well as high recall for even small objects. Benefited from learning directly in raw point clouds, our method is also able to precisely estimate 3D bounding boxes even under strong occlusion or with very sparse points. Evaluated on KITTI and SUN RGB-D 3D detection benchmarks, our method outperforms the state of the art by remarkable margins while having real-time capability. * Majority of the work done as an intern at Nuro, Inc. depth to point cloud 2D region (from CNN) to 3D frustum 3D box (from PointNet)
translated by 谷歌翻译
Current 3D object detection methods are heavily influenced by 2D detectors. In order to leverage architectures in 2D detectors, they often convert 3D point clouds to regular grids (i.e., to voxel grids or to bird's eye view images), or rely on detection in 2D images to propose 3D boxes. Few works have attempted to directly detect objects in point clouds. In this work, we return to first principles to construct a 3D detection pipeline for point cloud data and as generic as possible. However, due to the sparse nature of the data -samples from 2D manifolds in 3D space -we face a major challenge when directly predicting bounding box parameters from scene points: a 3D object centroid can be far from any surface point thus hard to regress accurately in one step. To address the challenge, we propose VoteNet, an end-to-end 3D object detection network based on a synergy of deep point set networks and Hough voting. Our model achieves state-of-the-art 3D detection on two large datasets of real 3D scans, ScanNet and SUN RGB-D with a simple design, compact model size and high efficiency. Remarkably, VoteNet outperforms previous methods by using purely geometric information without relying on color images.
translated by 谷歌翻译
LIDAR的准确3D对象检测对于自动驾驶至关重要。现有的研究全都基于平坦的假设。但是,实际的道路可能会在陡峭的部分中很复杂,从而打破了前提。在这种情况下,当前方法由于难以正确检测到倾斜的地形上的物体而受到性能降解。在这项工作中,我们提出了DET6D,这是第一个没有空间和姿势局限性的自由度3D对象检测器,以改善地形鲁棒性。我们通过建立在整个空间范围内检测对象的能力来选择基于点的框架。为了预测包括音高和滚动在内的全程姿势,我们设计了一个利用当地地面约束的地面方向分支。鉴于长尾非平板场景数据收集和6D姿势注释的难度,我们提出了斜坡,这是一种数据增强方法,用于从平面场景中记录的现有数据集中合成非平板地形。各种数据集的实验证明了我们方法在不同地形上的有效性和鲁棒性。我们进一步进行了扩展实验,以探索网络如何预测两个额外的姿势。提出的模块是现有基于点的框架的插件。该代码可在https://github.com/hitsz-nrsl/de6d上找到。
translated by 谷歌翻译
由于其在各种领域的广泛应用,3D对象检测正在接受行业和学术界的增加。在本文中,我们提出了从点云的3D对象检测的基于角度基于卷曲区域的卷积神经网络(PV-RCNNS)。首先,我们提出了一种新颖的3D探测器,PV-RCNN,由两个步骤组成:Voxel-to-keyPoint场景编码和Keypoint-to-Grid ROI特征抽象。这两个步骤深入地将3D体素CNN与基于点的集合的集合进行了集成,以提取辨别特征。其次,我们提出了一个先进的框架,PV-RCNN ++,用于更高效和准确的3D对象检测。它由两个主要的改进组成:有效地生产更多代表性关键点的划分的提案中心策略,以及用于更好地聚合局部点特征的vectorpool聚合,具有更少的资源消耗。通过这两种策略,我们的PV-RCNN ++比PV-RCNN快2倍,同时还在具有150米* 150M检测范围内的大型Waymo Open DataSet上实现更好的性能。此外,我们提出的PV-RCNNS在Waymo Open DataSet和高竞争力的基蒂基准上实现最先进的3D检测性能。源代码可在https://github.com/open-mmlab/openpcdet上获得。
translated by 谷歌翻译
激光器传感器的进步提供了支持3D场景了解的丰富的3D数据。然而,由于遮挡和信号未命中,LIDAR点云实际上是2.5D,因为它们仅覆盖部分底层形状,这对3D感知构成了根本挑战。为了解决挑战,我们提出了一种基于新的LIDAR的3D对象检测模型,被称为窗帘检测器(BTCDET)后面,该模型学习物体形状前沿并估计在点云中部分封闭(窗帘)的完整物体形状。 BTCDET首先识别受遮挡和信号未命中的影响的区域。在这些区域中,我们的模型预测了占用的概率,指示区域是否包含对象形状。与此概率图集成,BTCDET可以产生高质量的3D提案。最后,占用概率也集成到提案细化模块中以生成最终边界框。关于基蒂数据集的广泛实验和Waymo Open DataSet展示了BTCDET的有效性。特别是,对于Kitti基准测试的汽车和骑自行车者的3D检测,BTCDET通过显着的边缘超越所有公布的最先进的方法。代码已发布(https://github.com/xharlie/btcdet}(https://github.com/xharlie/btcdet)。
translated by 谷歌翻译
最近,融合了激光雷达点云和相机图像,提高了3D对象检测的性能和稳健性,因为这两种方式自然具有强烈的互补性。在本文中,我们通过引入新型级联双向融合〜(CB融合)模块和多模态一致性〜(MC)损耗来提出用于多模态3D对象检测的EPNet ++。更具体地说,所提出的CB融合模块提高点特征的丰富语义信息,以级联双向交互融合方式具有图像特征,导致更全面且辨别的特征表示。 MC损失明确保证预测分数之间的一致性,以获得更全面且可靠的置信度分数。基蒂,JRDB和Sun-RGBD数据集的实验结果展示了通过最先进的方法的EPNet ++的优越性。此外,我们强调一个关键但很容易被忽视的问题,这是探讨稀疏场景中的3D探测器的性能和鲁棒性。广泛的实验存在,EPNet ++优于现有的SOTA方法,在高稀疏点云壳中具有显着的边距,这可能是降低LIDAR传感器的昂贵成本的可用方向。代码将来会发布。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译
从点云的准确3D对象检测已成为自动驾驶中的重要组成部分。但是,前面的作品中的体积表示和投影方法无法在本地点集之间建立关系。在本文中,我们提出了稀疏的Voxel-Graph注意网络(SVGA-Net),一种新型端到端培训网络,主要包含Voxel-Traph模块和稀疏 - 致密的回归模块,以实现RAW的可比3D检测任务LIDAR数据。具体地,SVGA-NET通过所有体素构建每个分割的3D球形体素和全局KNN图中的本地完整图。本地和全局图作为增强提取特征的注意机制。此外,新颖的稀疏 - 密集的回归模块通过不同级别的特征映射聚合来增强3D盒估计精度。 KITTI检测基准测试的实验证明将图形表示扩展到3D对象检测的效率,并且所提出的SVGA-NET可以实现体面的检测精度。
translated by 谷歌翻译
Recently, Transformer has achieved great success in computer vision. However, it is constrained because the spatial and temporal complexity grows quadratically with the number of large points in 3D object detection applications. Previous point-wise methods are suffering from time consumption and limited receptive fields to capture information among points. In this paper, we propose a two-stage hyperbolic cosine transformer (ChTR3D) for 3D object detection from LiDAR point clouds. The proposed ChTR3D refines proposals by applying cosh-attention in linear computation complexity to encode rich contextual relationships among points. The cosh-attention module reduces the space and time complexity of the attention operation. The traditional softmax operation is replaced by non-negative ReLU activation and hyperbolic-cosine-based operator with re-weighting mechanism. Extensive experiments on the widely used KITTI dataset demonstrate that, compared with vanilla attention, the cosh-attention significantly improves the inference speed with competitive performance. Experiment results show that, among two-stage state-of-the-art methods using point-level features, the proposed ChTR3D is the fastest one.
translated by 谷歌翻译
来自LIDAR或相机传感器的3D对象检测任务对于自动驾驶至关重要。先锋尝试多模式融合的尝试补充了稀疏的激光雷达点云,其中包括图像的丰富语义纹理信息,以额外的网络设计和开销为代价。在这项工作中,我们提出了一个名为SPNET的新型语义传递框架,以通过丰富的上下文绘画的指导来提高现有基于激光雷达的3D检测模型的性能,在推理过程中没有额外的计算成本。我们的关键设计是首先通过训练语义绘制的教师模型来利用地面真实标签中潜在的指导性语义知识,然后引导纯LIDAR网络通过不同的粒度传播模块来学习语义绘制的表示:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类:类别:类别:类别:类别:类别:类别:类别: - 通过,像素的传递和实例传递。实验结果表明,所提出的SPNET可以与大多数现有的3D检测框架无缝合作,其中AP增益为1〜5%,甚至在KITTI测试基准上实现了新的最新3D检测性能。代码可在以下网址获得:https://github.com/jb892/sp​​net。
translated by 谷歌翻译
We present AVOD, an Aggregate View Object Detection network for autonomous driving scenarios. The proposed neural network architecture uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network. The proposed RPN uses a novel architecture capable of performing multimodal feature fusion on high resolution feature maps to generate reliable 3D object proposals for multiple object classes in road scenes. Using these proposals, the second stage detection network performs accurate oriented 3D bounding box regression and category classification to predict the extents, orientation, and classification of objects in 3D space. Our proposed architecture is shown to produce state of the art results on the KITTI 3D object detection benchmark [1] while running in real time with a low memory footprint, making it a suitable candidate for deployment on autonomous vehicles. Code is at: https://github.com/kujason/avod
translated by 谷歌翻译
尽管收集了越来越多的数据集用于培训3D对象检测模型,但在LiDar扫描上注释3D盒仍然需要大量的人类努力。为了自动化注释并促进了各种自定义数据集的生产,我们提出了一个端到端的多模式变压器(MTRANS)自动标签器,该标签既利用LIDAR扫描和图像,以生成来自弱2D边界盒的精确的3D盒子注释。为了减轻阻碍现有自动标签者的普遍稀疏性问题,MTRAN通过基于2D图像信息生成新的3D点来致密稀疏点云。凭借多任务设计,MTRANS段段前景/背景片段,使LIDAR POINT CLUENS云密布,并同时回归3D框。实验结果验证了MTRAN对提高生成标签质量的有效性。通过丰富稀疏点云,我们的方法分别在Kitti中度和硬样品上获得了4.48 \%和4.03 \%更好的3D AP,而不是最先进的自动标签器。也可以扩展Mtrans以提高3D对象检测的准确性,从而在Kitti硬样品上产生了显着的89.45 \%AP。代码位于\ url {https://github.com/cliu2/mtrans}。
translated by 谷歌翻译
目前,现有的最先进的3D对象检测器位于两阶段范例中。这些方法通常包括两个步骤:1)利用区域提案网络以自下而上的方式提出少数高质量的提案。 2)调整拟议区域的语义特征的大小和汇集,以总结Roi-Wise表示进一步改进。注意,步骤2中的这些ROI-WISE表示在馈送到遵循检测标题之后,在步骤2中的循环表示作为不相关的条目。然而,我们观察由步骤1所产生的这些提案,以某种方式从地面真理偏移,在局部邻居中兴起潜在的概率。在该提案在很大程度上用于由于坐标偏移而导致其边界信息的情况下出现挑战,而现有网络缺乏相应的信息补偿机制。在本文中,我们向点云进行了3D对象检测的$ BADET $。具体地,而不是以先前的工作独立地将每个提议进行独立地改进每个提议,我们将每个提议代表作为在给定的截止阈值内的图形构造的节点,局部邻域图形式的提案,具有明确利用的对象的边界相关性。此外,我们设计了轻量级区域特征聚合模块,以充分利用Voxel-Wise,Pixel-Wise和Point-Wise特征,具有扩展的接收领域,以实现更多信息ROI-WISE表示。我们在广泛使用的基提数据集中验证了坏人,并且具有高度挑战的Nuscenes数据集。截至4月17日,2021年,我们的坏账在基蒂3D检测排行榜上实现了Par表演,并在Kitti Bev检测排行榜上排名在$ 1 ^ {st} $ in $ superge $难度。源代码可在https://github.com/rui-qian/badet中获得。
translated by 谷歌翻译
人的大脑可以毫不费力地识别和定位对象,而基于激光雷达点云的当前3D对象检测方法仍然报告了较低的性能,以检测闭塞和远处的对象:点云的外观由于遮挡而变化很大,并且在沿线的固有差异沿点固有差异变化。传感器的距离。因此,设计功能表示对此类点云至关重要。受到人类联想识别的启发,我们提出了一个新颖的3D检测框架,该框架通过域的适应来使对象完整特征。我们弥合感知域之间的差距,其中特征是从具有亚最佳表示的真实场景中得出的,以及概念域,其中功能是从由不批准对象组成的增强场景中提取的,并具有丰富的详细信息。研究了一种可行的方法,可以在没有外部数据集的情况下构建概念场景。我们进一步介绍了一个基于注意力的重新加权模块,该模块可适应地增强更翔实区域的特征。该网络的功能增强能力将被利用,而无需在推理过程中引入额外的成本,这是各种3D检测框架中的插件。我们以准确性和速度都在Kitti 3D检测基准上实现了新的最先进性能。关于Nuscenes和Waymo数据集的实验也验证了我们方法的多功能性。
translated by 谷歌翻译
两阶段探测器在3D对象检测中已广受欢迎。大多数两阶段的3D检测器都使用网格点,体素电网或第二阶段的ROI特征提取的采样关键点。但是,这种方法在处理不均匀分布和稀疏的室外点方面效率低下。本文在三个方面解决了这个问题。 1)动态点聚集。我们建议补丁搜索以快速在本地区域中为每个3D提案搜索点。然后,将最远的体素采样采样用于均匀采样点。特别是,体素尺寸沿距离变化,以适应点的不均匀分布。 2)Ro-Graph Poling。我们在采样点上构建本地图,以通过迭代消息传递更好地模型上下文信息和地雷关系。 3)视觉功能增强。我们引入了一种简单而有效的融合策略,以补偿具有有限语义提示的稀疏激光雷达点。基于这些模块,我们将图形R-CNN构建为第二阶段,可以将其应用于现有的一阶段检测器,以始终如一地提高检测性能。广泛的实验表明,图R-CNN的表现优于最新的3D检测模型,而Kitti和Waymo Open DataSet的差距很大。我们在Kitti Bev汽车检测排行榜上排名第一。代码将在\ url {https://github.com/nightmare-n/graphrcnn}上找到。
translated by 谷歌翻译
This paper aims at high-accuracy 3D object detection in autonomous driving scenario. We propose Multi-View 3D networks (MV3D), a sensory-fusion framework that takes both LIDAR point cloud and RGB images as input and predicts oriented 3D bounding boxes. We encode the sparse 3D point cloud with a compact multi-view representation. The network is composed of two subnetworks: one for 3D object proposal generation and another for multi-view feature fusion. The proposal network generates 3D candidate boxes efficiently from the bird's eye view representation of 3D point cloud. We design a deep fusion scheme to combine region-wise features from multiple views and enable interactions between intermediate layers of different paths. Experiments on the challenging KITTI benchmarkshow that our approach outperforms the state-of-the-art by around 25% and 30% AP on the tasks of 3D localization and 3D detection. In addition, for 2D detection, our approach obtains 14.9% higher AP than the state-of-the-art on the hard data among the LIDAR-based methods.
translated by 谷歌翻译