目前,现有的最先进的3D对象检测器位于两阶段范例中。这些方法通常包括两个步骤:1)利用区域提案网络以自下而上的方式提出少数高质量的提案。 2)调整拟议区域的语义特征的大小和汇集,以总结Roi-Wise表示进一步改进。注意,步骤2中的这些ROI-WISE表示在馈送到遵循检测标题之后,在步骤2中的循环表示作为不相关的条目。然而,我们观察由步骤1所产生的这些提案,以某种方式从地面真理偏移,在局部邻居中兴起潜在的概率。在该提案在很大程度上用于由于坐标偏移而导致其边界信息的情况下出现挑战,而现有网络缺乏相应的信息补偿机制。在本文中,我们向点云进行了3D对象检测的$ BADET $。具体地,而不是以先前的工作独立地将每个提议进行独立地改进每个提议,我们将每个提议代表作为在给定的截止阈值内的图形构造的节点,局部邻域图形式的提案,具有明确利用的对象的边界相关性。此外,我们设计了轻量级区域特征聚合模块,以充分利用Voxel-Wise,Pixel-Wise和Point-Wise特征,具有扩展的接收领域,以实现更多信息ROI-WISE表示。我们在广泛使用的基提数据集中验证了坏人,并且具有高度挑战的Nuscenes数据集。截至4月17日,2021年,我们的坏账在基蒂3D检测排行榜上实现了Par表演,并在Kitti Bev检测排行榜上排名在$ 1 ^ {st} $ in $ superge $难度。源代码可在https://github.com/rui-qian/badet中获得。
translated by 谷歌翻译
We present a novel and high-performance 3D object detection framework, named PointVoxel-RCNN (PV-RCNN), for accurate 3D object detection from point clouds. Our proposed method deeply integrates both 3D voxel Convolutional Neural Network (CNN) and PointNet-based set abstraction to learn more discriminative point cloud features. It takes advantages of efficient learning and high-quality proposals of the 3D voxel CNN and the flexible receptive fields of the PointNet-based networks. Specifically, the proposed framework summarizes the 3D scene with a 3D voxel CNN into a small set of keypoints via a novel voxel set abstraction module to save follow-up computations and also to encode representative scene features. Given the highquality 3D proposals generated by the voxel CNN, the RoIgrid pooling is proposed to abstract proposal-specific features from the keypoints to the RoI-grid points via keypoint set abstraction with multiple receptive fields. Compared with conventional pooling operations, the RoI-grid feature points encode much richer context information for accurately estimating object confidences and locations. Extensive experiments on both the KITTI dataset and the Waymo Open dataset show that our proposed PV-RCNN surpasses state-of-the-art 3D detection methods with remarkable margins by using only point clouds. Code is available at https://github.com/open-mmlab/OpenPCDet.
translated by 谷歌翻译
3D object detection from LiDAR point cloud is a challenging problem in 3D scene understanding and has many practical applications. In this paper, we extend our preliminary work PointRCNN to a novel and strong point-cloud-based 3D object detection framework, the part-aware and aggregation neural network (Part-A 2 net). The whole framework consists of the part-aware stage and the part-aggregation stage. Firstly, the part-aware stage for the first time fully utilizes free-of-charge part supervisions derived from 3D ground-truth boxes to simultaneously predict high quality 3D proposals and accurate intra-object part locations. The predicted intra-object part locations within the same proposal are grouped by our new-designed RoI-aware point cloud pooling module, which results in an effective representation to encode the geometry-specific features of each 3D proposal. Then the part-aggregation stage learns to re-score the box and refine the box location by exploring the spatial relationship of the pooled intra-object part locations. Extensive experiments are conducted to demonstrate the performance improvements from each component of our proposed framework. Our Part-A 2 net outperforms all existing 3D detection methods and achieves new state-of-the-art on KITTI 3D object detection dataset by utilizing only the LiDAR point cloud data. Code is available at https://github.com/sshaoshuai/PointCloudDet3D.
translated by 谷歌翻译
由于其在各种领域的广泛应用,3D对象检测正在接受行业和学术界的增加。在本文中,我们提出了从点云的3D对象检测的基于角度基于卷曲区域的卷积神经网络(PV-RCNNS)。首先,我们提出了一种新颖的3D探测器,PV-RCNN,由两个步骤组成:Voxel-to-keyPoint场景编码和Keypoint-to-Grid ROI特征抽象。这两个步骤深入地将3D体素CNN与基于点的集合的集合进行了集成,以提取辨别特征。其次,我们提出了一个先进的框架,PV-RCNN ++,用于更高效和准确的3D对象检测。它由两个主要的改进组成:有效地生产更多代表性关键点的划分的提案中心策略,以及用于更好地聚合局部点特征的vectorpool聚合,具有更少的资源消耗。通过这两种策略,我们的PV-RCNN ++比PV-RCNN快2倍,同时还在具有150米* 150M检测范围内的大型Waymo Open DataSet上实现更好的性能。此外,我们提出的PV-RCNNS在Waymo Open DataSet和高竞争力的基蒂基准上实现最先进的3D检测性能。源代码可在https://github.com/open-mmlab/openpcdet上获得。
translated by 谷歌翻译
与2D对象检测不同,其中所有ROI功能来自网格像素,3D点云对象检测的ROI特征提取更加多样化。在本文中,我们首先比较和分析两个最先进模型PV-RCNN和Voxel-RCNN之间的结构和性能的差异。然后,我们发现两种模型之间的性能差距不来自点信息,而是结构信息。 Voxel特征包含更多结构信息,因为它们会进行量化而不是向下采样到点云,以便它们基本上可以包含整个点云的完整信息。体素特征中的强大结构信息使得探测器在我们的实验中具有更高的性能,即使体素功能没有准确的位置信息,也可以在我们的实验中进行更高的性能。然后,我们建议结构信息是3D对象检测的关键。基于上述结论,我们提出了一种自我关注的ROI特征提取器(SARFE),以增强从3D提案中提取的特征的结构信息。 SARFE是一种即插即用模块,可以轻松使用现有的3D探测器。我们的SARFE在Kitti DataSet和Waymo Open DataSet上进行评估。通过新引进的SARFE,我们通过在Kitti DataSet上的骑自行车者中的大型余量来提高最先进的3D探测器的性能,同时保持实时能力。
translated by 谷歌翻译
两阶段探测器在3D对象检测中已广受欢迎。大多数两阶段的3D检测器都使用网格点,体素电网或第二阶段的ROI特征提取的采样关键点。但是,这种方法在处理不均匀分布和稀疏的室外点方面效率低下。本文在三个方面解决了这个问题。 1)动态点聚集。我们建议补丁搜索以快速在本地区域中为每个3D提案搜索点。然后,将最远的体素采样采样用于均匀采样点。特别是,体素尺寸沿距离变化,以适应点的不均匀分布。 2)Ro-Graph Poling。我们在采样点上构建本地图,以通过迭代消息传递更好地模型上下文信息和地雷关系。 3)视觉功能增强。我们引入了一种简单而有效的融合策略,以补偿具有有限语义提示的稀疏激光雷达点。基于这些模块,我们将图形R-CNN构建为第二阶段,可以将其应用于现有的一阶段检测器,以始终如一地提高检测性能。广泛的实验表明,图R-CNN的表现优于最新的3D检测模型,而Kitti和Waymo Open DataSet的差距很大。我们在Kitti Bev汽车检测排行榜上排名第一。代码将在\ url {https://github.com/nightmare-n/graphrcnn}上找到。
translated by 谷歌翻译
近年来,由于深度学习技术的发展,LiDar Point Clouds的3D对象检测取得了长足的进步。尽管基于体素或基于点的方法在3D对象检测中很受欢迎,但它们通常涉及耗时的操作,例如有关体素的3D卷积或点之间的球查询,从而使所得网络不适合时间关键应用程序。另一方面,基于2D视图的方法具有较高的计算效率,而通常比基于体素或基于点的方法获得的性能低。在这项工作中,我们提出了一个基于实时视图的单阶段3D对象检测器,即CVFNET完成此任务。为了在苛刻的效率条件下加强跨视图的学习,我们的框架提取了不同视图的特征,并以有效的渐进式方式融合了它们。我们首先提出了一个新颖的点范围特征融合模块,该模块在多个阶段深入整合点和范围视图特征。然后,当将所获得的深点视图转换为鸟类视图时,特殊的切片柱旨在很好地维护3D几何形状。为了更好地平衡样品比率,提出了一个稀疏的柱子检测头,将检测集中在非空网上。我们对流行的Kitti和Nuscenes基准进行了实验,并以准确性和速度来实现最先进的性能。
translated by 谷歌翻译
从点云的准确3D对象检测已成为自动驾驶中的重要组成部分。但是,前面的作品中的体积表示和投影方法无法在本地点集之间建立关系。在本文中,我们提出了稀疏的Voxel-Graph注意网络(SVGA-Net),一种新型端到端培训网络,主要包含Voxel-Traph模块和稀疏 - 致密的回归模块,以实现RAW的可比3D检测任务LIDAR数据。具体地,SVGA-NET通过所有体素构建每个分割的3D球形体素和全局KNN图中的本地完整图。本地和全局图作为增强提取特征的注意机制。此外,新颖的稀疏 - 密集的回归模块通过不同级别的特征映射聚合来增强3D盒估计精度。 KITTI检测基准测试的实验证明将图形表示扩展到3D对象检测的效率,并且所提出的SVGA-NET可以实现体面的检测精度。
translated by 谷歌翻译
由于基于相交的联盟(IOU)优化维持最终IOU预测度量和损失的一致性,因此它已被广泛用于单级2D对象检测器的回归和分类分支。最近,几种3D对象检测方法采用了基于IOU的优化,并用3D iou直接替换了2D iou。但是,由于复杂的实施和效率低下的向后操作,3D中的这种直接计算非常昂贵。此外,基于3D IOU的优化是优化的,因为它对旋转很敏感,因此可能导致训练不稳定性和检测性能恶化。在本文中,我们提出了一种新型的旋转旋转iou(RDIOU)方法,该方法可以减轻旋转敏感性问题,并在训练阶段与3D IOU相比产生更有效的优化目标。具体而言,我们的RDIOU通过将旋转变量解耦为独立术语,但保留3D iou的几何形状来简化回归参数的复杂相互作用。通过将RDIOU纳入回归和分类分支,鼓励网络学习更精确的边界框,并同时克服分类和回归之间的错位问题。基准Kitti和Waymo开放数据集的广泛实验验证我们的RDIOU方法可以为单阶段3D对象检测带来实质性改进。
translated by 谷歌翻译
Recently, Transformer has achieved great success in computer vision. However, it is constrained because the spatial and temporal complexity grows quadratically with the number of large points in 3D object detection applications. Previous point-wise methods are suffering from time consumption and limited receptive fields to capture information among points. In this paper, we propose a two-stage hyperbolic cosine transformer (ChTR3D) for 3D object detection from LiDAR point clouds. The proposed ChTR3D refines proposals by applying cosh-attention in linear computation complexity to encode rich contextual relationships among points. The cosh-attention module reduces the space and time complexity of the attention operation. The traditional softmax operation is replaced by non-negative ReLU activation and hyperbolic-cosine-based operator with re-weighting mechanism. Extensive experiments on the widely used KITTI dataset demonstrate that, compared with vanilla attention, the cosh-attention significantly improves the inference speed with competitive performance. Experiment results show that, among two-stage state-of-the-art methods using point-level features, the proposed ChTR3D is the fastest one.
translated by 谷歌翻译
实时和高性能3D对象检测对于自动驾驶至关重要。最近表现最佳的3D对象探测器主要依赖于基于点或基于3D Voxel的卷积,这两者在计算上均无效地部署。相比之下,基于支柱的方法仅使用2D卷积,从而消耗了较少的计算资源,但它们的检测准确性远远落后于基于体素的对应物。在本文中,通过检查基于支柱和体素的探测器之间的主要性能差距,我们开发了一个实时和高性能的柱子检测器,称为Pillarnet。提出的柱子由一个强大的编码网络组成,用于有效的支柱特征学习,用于空间语义特征融合的颈网和常用的检测头。仅使用2D卷积,Pillarnet具有可选的支柱尺寸的灵活性,并与经典的2D CNN骨架兼容,例如VGGNET和RESNET.ADITIONICLY,Pillarnet受益于我们设计的方向iOu decoupled iou Recressions you Recressions损失以及IOU Aware Pareace Predication Prediction Predictight offication Branch。大规模Nuscenes数据集和Waymo Open数据集的广泛实验结果表明,在有效性和效率方面,所提出的Pillarnet在最新的3D检测器上表现良好。源代码可在https://github.com/agent-sgs/pillarnet.git上找到。
translated by 谷歌翻译
We present a new two-stage 3D object detection framework, named sparse-to-dense 3D Object Detector (STD). The first stage is a bottom-up proposal generation network that uses raw point cloud as input to generate accurate proposals by seeding each point with a new spherical anchor. It achieves a high recall with less computation compared with prior works. Then, PointsPool is applied for generating proposal features by transforming their interior point features from sparse expression to compact representation, which saves even more computation time. In box prediction, which is the second stage, we implement a parallel intersection-over-union (IoU) branch to increase awareness of localization accuracy, resulting in further improved performance. We conduct experiments on KITTI dataset, and evaluate our method in terms of 3D object and Bird's Eye View (BEV) detection. Our method outperforms other stateof-the-arts by a large margin, especially on the hard set, with inference speed more than 10 FPS.
translated by 谷歌翻译
在前景点(即物体)和室外激光雷达点云中的背景点之间通常存在巨大的失衡。它阻碍了尖端的探测器专注于提供信息的区域,以产生准确的3D对象检测结果。本文提出了一个新的对象检测网络,该对象检测网络通过称为PV-RCNN ++的语义点 - 素voxel特征相互作用。与大多数现有方法不同,PV-RCNN ++探索了语义信息,以增强对象检测的质量。首先,提出了一个语义分割模块,以保留更具歧视性的前景关键。这样的模块将指导我们的PV-RCNN ++在关键区域集成了更多与对象相关的点和体素特征。然后,为了使点和体素有效相互作用,我们利用基于曼哈顿距离的体素查询来快速采样关键点周围的体素特征。与球查询相比,这种体素查询将降低从O(N)到O(K)的时间复杂性。此外,为了避免仅学习本地特征,基于注意力的残留点网模块旨在扩展接收场,以将相邻的素素特征适应到关键点中。 Kitti数据集的广泛实验表明,PV-RCNN ++达到81.60 $ \%$,40.18 $ \%$,68.21 $ \%$ \%$ 3D地图在汽车,行人和骑自行车的人方面,可以在州,甚至可以在州立骑行者,甚至更好地绩效-艺术。
translated by 谷歌翻译
它得到了很好的认识到,从深度感知的LIDAR点云和语义富有的立体图像中融合互补信息将有利于3D对象检测。然而,探索稀疏3D点和密集2D像素之间固有的不自然相互作用并不重要。为了简化这种困难,最近的建议通常将3D点投影到2D图像平面上以对图像数据进行采样,然后聚合点处的数据。然而,这种方法往往遭受点云和RGB图像的分辨率之间的不匹配,导致次优性能。具体地,作为多模态数据聚合位置的稀疏点导致高分辨率图像的严重信息丢失,这反过来破坏了多传感器融合的有效性。在本文中,我们呈现VPFNET - 一种新的架构,可以在“虚拟”点处巧妙地对齐和聚合点云和图像数据。特别地,它们的密度位于3D点和2D像素的密度之间,虚拟点可以很好地桥接两个传感器之间的分辨率间隙,从而保持更多信息以进行处理。此外,我们还研究了可以应用于点云和RGB图像的数据增强技术,因为数据增强对迄今为止对3D对象探测器的贡献不可忽略。我们对Kitti DataSet进行了广泛的实验,与最先进的方法相比,观察到了良好的性能。值得注意的是,我们的VPFNET在KITTI测试集上实现了83.21 \%中等3D AP和91.86 \%适度的BEV AP,自2021年5月21日起排名第一。网络设计也考虑了计算效率 - 我们可以实现FPS 15对单个NVIDIA RTX 2080TI GPU。该代码将用于复制和进一步调查。
translated by 谷歌翻译
人的大脑可以毫不费力地识别和定位对象,而基于激光雷达点云的当前3D对象检测方法仍然报告了较低的性能,以检测闭塞和远处的对象:点云的外观由于遮挡而变化很大,并且在沿线的固有差异沿点固有差异变化。传感器的距离。因此,设计功能表示对此类点云至关重要。受到人类联想识别的启发,我们提出了一个新颖的3D检测框架,该框架通过域的适应来使对象完整特征。我们弥合感知域之间的差距,其中特征是从具有亚最佳表示的真实场景中得出的,以及概念域,其中功能是从由不批准对象组成的增强场景中提取的,并具有丰富的详细信息。研究了一种可行的方法,可以在没有外部数据集的情况下构建概念场景。我们进一步介绍了一个基于注意力的重新加权模块,该模块可适应地增强更翔实区域的特征。该网络的功能增强能力将被利用,而无需在推理过程中引入额外的成本,这是各种3D检测框架中的插件。我们以准确性和速度都在Kitti 3D检测基准上实现了新的最先进性能。关于Nuscenes和Waymo数据集的实验也验证了我们方法的多功能性。
translated by 谷歌翻译
来自LIDAR或相机传感器的3D对象检测任务对于自动驾驶至关重要。先锋尝试多模式融合的尝试补充了稀疏的激光雷达点云,其中包括图像的丰富语义纹理信息,以额外的网络设计和开销为代价。在这项工作中,我们提出了一个名为SPNET的新型语义传递框架,以通过丰富的上下文绘画的指导来提高现有基于激光雷达的3D检测模型的性能,在推理过程中没有额外的计算成本。我们的关键设计是首先通过训练语义绘制的教师模型来利用地面真实标签中潜在的指导性语义知识,然后引导纯LIDAR网络通过不同的粒度传播模块来学习语义绘制的表示:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类别:类:类别:类别:类别:类别:类别:类别:类别: - 通过,像素的传递和实例传递。实验结果表明,所提出的SPNET可以与大多数现有的3D检测框架无缝合作,其中AP增益为1〜5%,甚至在KITTI测试基准上实现了新的最新3D检测性能。代码可在以下网址获得:https://github.com/jb892/sp​​net。
translated by 谷歌翻译
We address the problem of real-time 3D object detection from point clouds in the context of autonomous driving. Computation speed is critical as detection is a necessary component for safety. Existing approaches are, however, expensive in computation due to high dimensionality of point clouds. We utilize the 3D data more efficiently by representing the scene from the Bird's Eye View (BEV), and propose PIXOR, a proposal-free, single-stage detector that outputs oriented 3D object estimates decoded from pixelwise neural network predictions. The input representation, network architecture, and model optimization are especially designed to balance high accuracy and real-time efficiency. We validate PIXOR on two datasets: the KITTI BEV object detection benchmark, and a large-scale 3D vehicle detection benchmark. In both datasets we show that the proposed detector surpasses other state-of-the-art methods notably in terms of Average Precision (AP), while still runs at > 28 FPS.
translated by 谷歌翻译
Point cloud learning has lately attracted increasing attention due to its wide applications in many areas, such as computer vision, autonomous driving, and robotics. As a dominating technique in AI, deep learning has been successfully used to solve various 2D vision problems. However, deep learning on point clouds is still in its infancy due to the unique challenges faced by the processing of point clouds with deep neural networks. Recently, deep learning on point clouds has become even thriving, with numerous methods being proposed to address different problems in this area. To stimulate future research, this paper presents a comprehensive review of recent progress in deep learning methods for point clouds. It covers three major tasks, including 3D shape classification, 3D object detection and tracking, and 3D point cloud segmentation. It also presents comparative results on several publicly available datasets, together with insightful observations and inspiring future research directions.
translated by 谷歌翻译
In this paper, we propose PointRCNN for 3D object detection from raw point cloud. The whole framework is composed of two stages: stage-1 for the bottom-up 3D proposal generation and stage-2 for refining proposals in the canonical coordinates to obtain the final detection results. Instead of generating proposals from RGB image or projecting point cloud to bird's view or voxels as previous methods do, our stage-1 sub-network directly generates a small number of high-quality 3D proposals from point cloud in a bottom-up manner via segmenting the point cloud of the whole scene into foreground points and background. The stage-2 sub-network transforms the pooled points of each proposal to canonical coordinates to learn better local spatial features, which is combined with global semantic features of each point learned in stage-1 for accurate box refinement and confidence prediction. Extensive experiments on the 3D detection benchmark of KITTI dataset show that our proposed architecture outperforms state-of-the-art methods with remarkable margins by using only point cloud as input. The code is available at https://github.com/sshaoshuai/PointRCNN.
translated by 谷歌翻译
虽然基于点的网络被证明是3D点云建模的准确性,但它们仍然落在3D检测中基于体素的竞争对手后面。我们观察到,用于下采样点的主要集合抽象设计可以保持太多的不重要背景信息,可以影响检测对象的特征学习。为了解决这个问题,我们提出了一种名为语义增强集抽象(SASA)的新型集抽象方法。从技术上讲,我们首先将二进制分段模块添加为侧面输出,以帮助识别前景点。基于估计的点亮前景分数,我们提出了一种语义引导的点采样算法,帮助在下采样期间保持更重要的前景点。在实践中,SASA显示有效地识别与前景对象相关的有价值的点,并改善基于点的3D检测特征学习。此外,它是一种易于插入式模块,能够提升各种基于点的探测器,包括单级和两级的探测器。对流行的基蒂和NUSCENES数据集的广泛实验验证了SASA的优越性,提升基于点的检测模型,以达到最先进的基于体素的方法。
translated by 谷歌翻译