作为物理系统或过程的实时数字对应物,用于系统仿真和优化的数字双胞胎。神经网络是通过使用数据构建数字双胞胎模型的一种方法,尤其是当基于物理的模型不准确甚至不可用时,尤其是当基于物理的模型时。但是,对于新设计的系统,需要累积足够的神经网络模型的数据需要时间,并且只有近似的基于物理的模型。为了利用两种模型,本文提出了一种模型,它结合了基于物理的模型和神经网络模型,以提高系统的整个生命周期的预测精度。所提出的混合模型(Physeinet)能够自动结合模型并提高其预测性能。实验表明,物理体既优于基于物理的模型和神经网络模型。
translated by 谷歌翻译
精确预测加工循环时间在制造业中很重要。通常,计算机辅助制造(CAM)软件使用基本的运动设置使用来自刀具路径文件的命令进给的加工时间。通常,该方法不考虑刀具路径几何形状或刀具路公差,因此估计大幅度的加工循环时间。删除对机器特异性知识的需求,本文通过为每个机床轴构建神经网络模型提出了一种数据驱动的进给和加工周期时间预测方法。在本研究中,使用由指令的进给,标称加速,刀具路径几何和测量的进料组成的数据集来训练神经网络模型。在商业加工中心上使用代表性工业薄壁结构组件的验证试验表明,该方法估计了90%以上的加工时间。该方法表明,神经网络模型具有了解复杂机床系统的行为和预测循环时间的能力。进一步整合这些方法在工业4.0中的数字双胞胎的植入中至关重要。
translated by 谷歌翻译
更新和竣工模型在过程工厂的生命周期中起着重要作用。特别是,必须精确地为系统精确以确保系统的效率和可靠性。数据驱动的模型可以通过考虑不确定性和生命周期相关的更改来模拟子系统的最新行为。本文介绍了使用早期实施的原型作为示例的过程工厂的混合数字双床模型的逐步概念。它将详细介绍使用流程设备的数据驱动模型更新棕色域处理系统的第一原理模型和数字双胞胎的步骤。还将讨论产生竣工混合数码双床的挑战。在处理历史数据的帮助下,教导机器学习模型,可以随着时间的推移不断提高实现的数字双胞划,并且可以进一步优化这项工作。
translated by 谷歌翻译
了解添加剂制造(AM)过程的热行为对于增强质量控制和实现定制过程设计至关重要。大多数纯粹基于物理的计算模型都有密集的计算成本,因此不适合在线控制和迭代设计应用程序。数据驱动的模型利用最新开发的计算工具可以作为更有效的替代品,但通常会在大量仿真数据上进行培训,并且通常无法有效使用小但高质量的实验数据。在这项工作中,我们使用物理知识的神经网络开发了AM过程的基于混合物理学的热建模方法。具体而言,通过红外摄像机测量的部分观察到的温度数据与物理定律结合在一起,以预测全场温度病史并发现未知的材料和过程参数。在数值和实验示例中,添加辅助训练数据并使用转移学习技术在训练效率和预测准确性方面的有效性,以及具有部分观察到的数据的未知参数的能力。结果表明,混合热模型可以有效地识别未知参数并准确捕获全田温度,因此它具有在AM的迭代过程设计和实时过程控制中的潜力。
translated by 谷歌翻译
本研究介绍了混合过程建模和优化的广阔视角,将科学知识和数据分析在生物处理和化学工程中与科学引导机学习(SGML)方法相结合。我们将这种方法分为两大类。首先是指基于数据的ML模型的恭维的情况并使基于第一原理的科学的模型在预测中更准确,并且第二个对应于科学知识有助于使ML模型更加科学地保持的情况。我们对科学和工程文献进行了详细审查,与混合SGML方法有关,并提出了混合动力SGML模型的系统分类。为了应用ML改善基于科学的模型,我们呈现了直串行和并行混合建模的子类别及其组合,反向建模,阶阶建模,量化过程中的不确定性,甚至发现该过程的管理方程式的博览会模型。为了应用科学原则来改善ML模型,我们讨论科学导游的设计,学习和改进的子类别。对于每个子类别,我们确定其要求,优势和局限性以及其在生物处理和化学工程中的出版和潜在的应用领域。
translated by 谷歌翻译
随着数据的不断增加,将现代机器学习方法应用于建模和控制等领域的兴趣爆炸。但是,尽管这种黑盒模型具有灵活性和令人惊讶的准确性,但仍然很难信任它们。结合两种方法的最新努力旨在开发灵活的模型,这些模型仍然可以很好地推广。我们称为混合分析和建模(HAM)的范式。在这项工作中,我们调查了使用数据驱动模型纠正基于错误的物理模型的纠正源术语方法(COSTA)。这使我们能够开发出可以进行准确预测的模型,即使问题的基本物理学尚未得到充分理解。我们将Costa应用于铝电解电池中的Hall-H \'Eroult工艺。我们证明该方法提高了准确性和预测稳定性,从而产生了总体可信赖的模型。
translated by 谷歌翻译
在这项工作中,我们介绍,证明并展示了纠正源期限方法(Costa) - 一种新的混合分析和建模(火腿)的新方法。 HAM的目标是将基于物理的建模(PBM)和数据驱动的建模(DDM)组合,以创建概括,值得信赖,准确,计算高效和自我不断发展的模型。 Costa通过使用深神经网络产生的纠正源期限增强PBM模型的控制方程来实现这一目标。在一系列关于一维热扩散的数值实验中,发现CostA在精度方面优于相当的DDM和PBM模型 - 通常通过几个数量级降低预测误差 - 同时也比纯DDM更好地概括。由于其灵活而稳定的理论基础,Costa提供了一种模块化框架,用于利用PBM和DDM中的新颖开发。其理论基础还确保了哥斯达队可以用来模拟由(确定性)部分微分方程所控制的任何系统。此外,Costa有助于在PBM的背景下解释DNN生成的源术语,这导致DNN的解释性改善。这些因素使哥斯达成为数据驱动技术的潜在门开启者,以进入先前为纯PBM保留的高赌注应用。
translated by 谷歌翻译
预后有助于实地系统或产品的寿命。量化该系统的当前健康状况使预后能够增强操作员的决策以保护系统的健康状况。由于(a)未知的身体关系和/(b)数据中的不规则性远远超出了问题的启动,因此很难为系统创建预后。传统上,三种不同的建模范例已被用来开发预后模型:基于物理学(PBM),数据驱动(DDM)和混合模型。最近,结合了基于PBM和DDM的方法并减轻其局限性的混合建模方法在预后域中获得了吸引力。在本文中,概述了基于模糊逻辑和生成对抗网络(GAN)的概念的组合概念的一种新型混合建模方法。基于Fuzzygan的方法将基于物理的模型嵌入模糊含义的聚集中。该技术将学习方法的输出限制为现实解决方案。轴承问题的结果表明,在模糊逻辑模型中添加基于物理的聚集的功效,以提高GAN对健康建模的能力并提供更准确的系统预后。
translated by 谷歌翻译
使用机器学习结构的增强机械常微分方程(ODE)模型是一种新颖的方法,可以通过测量数据创建专业知识和现实的高精度,低维模型。我们的探索性研究侧重于培训具有限制循环的物理非线性动力系统的通用微分方程(UDE)模型:勃起振动振荡和电动非线性振荡器的空心罐。我们考虑通过数值模拟产生培训数据的示例,而我们还将建议的建模概念应用于物理实验,允许我们研究各种复杂性的问题。要收集培训数据,因此使用基于控制的延续的方法,因为它不仅捕获稳定,而且使用观察到的系统的不稳定限制周期。此功能使得可以提取有关观察系统的更多信息,而不是标准,开环方法允许。我们使用神经网络和高斯过程作为通用近似器,以及机械模型,对UDE建模方法的准确性和稳健性进行了关键评估。我们还突出显示可能在培训过程中遇到的潜在问题,指示当前建模框架的限制。
translated by 谷歌翻译
最近的机器学习(ML)和深度学习(DL)的发展增加了所有部门的机会。 ML是一种重要的工具,可以应用于许多学科,但其直接应用于土木工程问题可能是挑战性的。在实验室中模拟的土木工程应用程序通常在现实世界测试中失败。这通常归因于用于培训和测试ML模型的数据之间的数据不匹配以及它在现实世界中遇到的数据,称为数据偏移的现象。然而,基于物理的ML模型集成了数据,部分微分方程(PDE)和数学模型以解决数据移位问题。基于物理的ML模型训练,以解决监督学习任务,同时尊重一般非线性方程描述的任何给定的物理定律。基于物理的ML,它在许多科学学科中占据中心阶段,在流体动力学,量子力学,计算资源和数据存储中起着重要作用。本文综述了基于物理学的ML历史及其在土木工程中的应用。
translated by 谷歌翻译
锂离子电池(LIBS)的数学建模是先进电池管理中的主要挑战。本文提出了两个新的框架,将基于机器的基于机器的模型集成,以实现LIBS的高精度建模。该框架的特征在于通知物理模型的状态信息的机器学习模型,从而实现物理和机器学习之间的深度集成。基于框架,通过将电化学模型和等效电路模型分别与前馈神经网络组合,构造了一系列混合模型。混合模型在结构中相对令人惊讶,可以在广泛的C速率下提供相当大的预测精度,如广泛的模拟和实验所示。该研究进一步扩展以进行衰老感知混合建模,导致杂交模型意识到意识到健康状态以进行预测。实验表明,该模型在整个Lib的循环寿命中具有很高的预测精度。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
科学机器学习(Sciml)的出现在思路科学领域开辟了一个新的领域,通过在基于物理和数据建模的界面的界面中开发方法。为此,近年来介绍了物理知识的神经网络(Pinns),通过在所谓的焊点上纳入物理知识来应对培训数据的稀缺。在这项工作中,我们研究了Pinns关于用于强制基于物理惩罚术语的配偶数量的预测性能。我们表明Pinns可能会失败,学习通过定义来满足物理惩罚术语的琐碎解决方案。我们制定了一种替代的采样方法和新的惩罚术语,使我们能够在具有竞争性结果的数据稀缺设置中纠正Pinns中的核心问题,同时减少最多80 \%的基准问题所需的搭配数量。
translated by 谷歌翻译
根据数据得出的模型的顺序/维度通常受观测值的数量或受监视系统(传感节点)的上下文的限制。对于结构系统(例如,民用或机械结构)尤其如此,这通常是高维本质上的。在物理知识的机器学习范围内,本文提出了一个框架(称为神经模态odes),以将基于物理学的建模与深度学习(尤其是神经通用差分方程 - 神经odes)整合在一起,以建模受监视和高的动态。 - 维工程系统。在这种启动探索中,我们将自己限制在线性或轻度非线性系统中。我们提出了一种结构,该体系结构将变异自动编码器的动态版本与物理信息的神经odes(Pi-神经odes)融合在一起。作为自动编码器的一部分,编码器从观测数据的前几个项目到潜在变量的初始值学习了抽象映射,从而驱动通过物理知识的神经odes学习嵌入式动力学,并施加\ textit {模态模型}该潜在空间的结构。所提出的模型的解码器采用了从应用于基于物理学模型的线性化部分的本征分析中得出的本征模:一种隐含携带自由度(DOFS)之间的空间关系的过程。该框架在数值示例中得到了验证,以及一个缩放的电缆固定桥的实验数据集,在该数据集中,学到的混合模型被证明胜过纯粹基于物理的建模方法。我们进一步显示了在虚拟传感的上下文中,即从空间稀疏数据中恢复了未衡量的DOF中的广义响应量。
translated by 谷歌翻译
在这项工作中,我们提出了一种称为疾病知识神经网络(Dinns)的方法,可以使用能够有效地预测传染病的传播。这种方法在成功的物理学上建立了已经应用于可以通过线性和非线性普通和部分微分方程建模的各种应用的知识神经网络方法。具体而言,我们建立了Pinns向SIR隔间模型的应用,并扩展了描述各种传染病的脚手架数学模型。我们展示神经网络如何能够学习疾病如何传播,预测其进展,并找到其独特参数(例如死亡率)。为了证明Dinns的稳健性和疗效,我们将这种方法应用于11种高度传染病,这些疾病在增加的复杂程度上进行了建模。我们的计算实验表明,Dinns是有效了解传播动态的可靠候选者,并预测其在可用现实世界数据中的进展中的进展。
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
在机电一体化的IEEE / ASME交易上发布,DOI:10.1109 / TMECH.2021.3100150。理想情况下,需要精确的传感器测量来实现机电系统的闭环控制中的良好性能。因此,传感器故障将阻止系统正常工作,除非采用容错控制(FTC)架构。作为非线性系统的基于模型的FTC算法通常是具有挑战性的设计,本文基于深度学习的传感器故障存在于FTC的新方法。所考虑的方法用单个反复性神经网络替换故障检测和隔离和控制器设计的阶段,其在给定的时间窗口中具有过去的传感器测量值作为输入,以及控制变量的当前值作为输出。该端到端的深FTC方法应用于由球形倒立摆的机电调整系统,其构造通过反应轮改变,又通过电动机致动。模拟和实验结果表明,该方法可以处理连杆位置/速度传感器中发生的突然故障。提供的补充材料包括现实世界实验和软件源代码的视频。
translated by 谷歌翻译
本文侧重于各种技术来查找替代近似方法,可以普遍用于各种CFD问题,但计算成本低,运行时低。在机器学习领域中探讨了各种技术,以衡量实现核心野心的效用。稳定的平流扩散问题已被用作测试用例,以了解方法可以提供解决方案的复杂程度。最终,该重点留在物理知识的机器学习技术上,其中求解微分方程是可能的,而无需计算数据。 i.e的普遍方法拉加里斯et.al.和M. Raissi et.al彻底探讨。普遍存在的方法无法解决占主导地位问题。提出了一种称为分布物理知识神经网络(DPINN)的物理知情方法,以解决平流的主导问题。它通过分割域并将其他基于物理的限制引入均方平方损耗条款来增加旧方法的可执行和能力。完成各种实验以探索结束与该方法结束的最终可能性。也完成了参数研究以了解方法对不同可调参数的方法。该方法经过稳定的平流 - 扩散问题和不稳定的方脉冲问题。记录非常准确的结果。极端学习机(ELM)是一种以可调谐参数成本的快速神经网络算法。在平面扩散问题上测试所提出的模型的基于ELM的变体。榆树使得复杂优化更简单,并且由于该方法是非迭代的,因此解决方案被记录在单一镜头中。基于ELM的变体似乎比简单的DPINN方法更好。在本文中,将来同时进行各种发展的范围。
translated by 谷歌翻译
本文旨在讨论和分析控制设计应用中经常性神经网络(RNN)的潜力。考虑RNN的主要系列,即神经非线性自回归外源,(NNARX),回波状态网络(ESN),长短短期存储器(LSTM)和门控复发单元(GRU)。目标是双重。首先,为了调查近期RNN培训的结果,可以享受输入到状态稳定性(ISS)和增量输入到状态稳定性({\ delta} ISS)保证。其次,讨论仍然阻碍RNN进行控制的问题,即它们的鲁棒性,核算和解释性。前者属性与网络的所谓概括能力有关,即即使在视野或扰动的输入轨迹存在下,它们与底层真实植物的一致性。后者与在RNN模型和植物之间提供明确的正式连接的可能性有关。在这种情况下,我们说明了Iss和{\ delta} ISS如何朝着RNN模型的稳健性和可验证代表重大步骤,而可解释性的要求铺平了基于物理的网络的使用方式。还简要讨论了植物模型的模型预测控制器的设计。最后,在模拟化学体系上说明了本文的一些主要话题。
translated by 谷歌翻译